solving three quadratic equations

1 Ansicht (letzte 30 Tage)
benjamin
benjamin am 9 Jul. 2014
Kommentiert: benjamin am 10 Jul. 2014
A=458.21
B=256.84
C=308.95
A=m*8/m*8+n*9+p*14
B=n*9/m*8+n*9+p*14
C=p*14/m*8+n*9+p*14
  3 Kommentare
Joseph Cheng
Joseph Cheng am 9 Jul. 2014
substitution? not too hard of an series to solve by hand as the first A equation can simplified and substitute the 9n+14p = 394.21.
benjamin
benjamin am 10 Jul. 2014
thanks for the answers but the equation is a bit complicated not the usual substitution method is to be use but instead after running the equation in the matlab it has to return a total of 1024.
to clarify this example the first equation states A=m*8/m*8+n*9+p*14 == m*8/m*8+n*9+p*14=458.21 and the final equation should be A+ B+C=D (1024) thanks.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Partial Differential Equation Toolbox finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by