Constrained linear least squares

13 Ansichten (letzte 30 Tage)
Hui
Hui am 1 Jul. 2014
Bearbeitet: Star Strider am 1 Jul. 2014
Hi everyone! I have a set of data such as:
y=[0.007696733 0.004758526 0.00547575 0.009628829 0.009749457 0.009073008 0.009647521 0.009795106 0.014071997 0.014208544 0.01758061 0.015072178 0.018425671 0.019217437 0.020314108 0.018246917 0.022694743 0.041827743 0.040799924 0.033812901 0.043516698];
y(t)=y(2:n);
y(t-1)=y(1:n-1);
I want to figure out the two parameters [b,c] of: y(t)=(1+b)*y(t-1)-b/c*(y(t-1))^2
What's more the two parameters need to be over 0;
Thank you so much for reading my question!

Antworten (1)

Star Strider
Star Strider am 1 Jul. 2014
Bearbeitet: Star Strider am 1 Jul. 2014
It is actually nonlinear, because it is nonlinear in the parameters (the partial derivatives of the function with respect to each parameter are functions of themselves or of other parameters).
Using lsqcurvefit (Optimization Toolbox), the code is:
n = length(y);
yd = y(2:n);
yi = y(1:n-1);
f = @(B,y) (1 + B(1)).*y - (B(1)./B(2)).*y.^2; % Objective function
yp = linspace(min(yi), max(yi)); % Plot vector for ‘yi’
bc = lsqcurvefit(f, rand(2,1)*100, yi, yd, [1; 1]*eps, [Inf; Inf])
figure(1)
plot(yd, yi, 'xb')
hold on
plot(yp, f(bc,yp), '-r')
hold off
grid
The fit produces:
b = 2.989459285195542E-01
c = 3.990401160101856E-02
b/c = 7.491625942488537E+00

Kategorien

Mehr zu Least Squares finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by