Constrained linear least squares
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi everyone! I have a set of data such as:
y=[0.007696733 0.004758526 0.00547575 0.009628829 0.009749457 0.009073008 0.009647521 0.009795106 0.014071997 0.014208544 0.01758061 0.015072178 0.018425671 0.019217437 0.020314108 0.018246917 0.022694743 0.041827743 0.040799924 0.033812901 0.043516698];
y(t)=y(2:n);
y(t-1)=y(1:n-1);
I want to figure out the two parameters [b,c] of: y(t)=(1+b)*y(t-1)-b/c*(y(t-1))^2

What's more the two parameters need to be over 0;
Thank you so much for reading my question!
0 Kommentare
Antworten (1)
Star Strider
am 1 Jul. 2014
Bearbeitet: Star Strider
am 1 Jul. 2014
It is actually nonlinear, because it is nonlinear in the parameters (the partial derivatives of the function with respect to each parameter are functions of themselves or of other parameters).
Using lsqcurvefit (Optimization Toolbox), the code is:
n = length(y);
yd = y(2:n);
yi = y(1:n-1);
f = @(B,y) (1 + B(1)).*y - (B(1)./B(2)).*y.^2; % Objective function
yp = linspace(min(yi), max(yi)); % Plot vector for ‘yi’
bc = lsqcurvefit(f, rand(2,1)*100, yi, yd, [1; 1]*eps, [Inf; Inf])
figure(1)
plot(yd, yi, 'xb')
hold on
plot(yp, f(bc,yp), '-r')
hold off
grid
The fit produces:
b = 2.989459285195542E-01
c = 3.990401160101856E-02
b/c = 7.491625942488537E+00
0 Kommentare
Siehe auch
Kategorien
Mehr zu Least Squares finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!