- Function to compute derivative. Mine is called "derivative."
- Function to compute objective function. Mine is called "objectiveFunction."
How to solve differential equations with parameters using fmincon to find out optimized parameters
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
kkng
am 18 Jun. 2014
Kommentiert: kkng
am 19 Jun. 2014
Hello, I need to find out the optimized two parameter(a and b) to make minimum of (f2+f1-0.576). What I have is the differential equations of f1,f2,and f3.
for example, f1'=3*a/b*f2*f1+16*(f3-f1) f2'=-3*a/b*f2*f1+(f3-f1) f3'= 5*a/b*f1+(f2+f3) f1(0)=f2(0)=f3(0)=1 and f2(1)+f1(1)=0.576 for 0<-x<-1. The ranges of parameters are 0<-a<-10 and 100<-b<-1000.
And I want to use fmincon to optimize a and b to make minimum of (f2(1)+f1(1)-0.576). I can solve the differential equations with the fixed a and b. But I don't know how to find out the optimized a and b. My fmincon equation is, [x,f]=fmincon (@myfun,...)
F=myfun (x,a,b) F=f2(1)+f1(1)-0.576
In F equation, there is no a or b, so I can not set the initial,Ub, or Lb for a and b in fmincon. Actually, I don't know how to solve the differential equations with ode45 without a and b now. Can anyone help me to solve the equation? Thank you in advance.
0 Kommentare
Akzeptierte Antwort
Jason Nicholson
am 19 Jun. 2014
Bearbeitet: Jason Nicholson
am 19 Jun. 2014
You need two functions:
Once you have the objective function, call fmincon. I do this in runOptimization. Note that
a = 3.2737
b = 3.2530
runOptimization.m
ab0 = [1; 1]; % initial guess
A = [ 1 0; % a<100
-1 0; % a>0
0 1; % b<22
0 -1];% b>0
b = [100*(1-eps); % a<100
0-eps; % a>0
22*(1-eps); % b<22
0-eps]; % b>0
ab = fmincon(@objectiveFunction, ab0, A, b);
a = ab(1);
b = ab(2);
derivative.m
function df = derivative(x, f, ab)
a = ab(1);
b = ab(2);
df = zeros(3,1);
df(1)=3*a/b*f(2)*f(1)+16*(f(3)-f(1));
df(2)=-3*a/b*f(2)*f(1)+(f(3)-f(1));
df(3)= 5*a/b*f(1)+(f(2)+f(3));
end % end function, derivative
objectiveFunction.m
function cost = objectiveFunction(ab)
f0 = [1;1;1];
[~, f] = ode113(@(t,f) derivative(t, f, ab), [0 1], f0);
cost = f(2, end) + f(1, end) - 0.576;
end % end function, objectiveFunction
3 Kommentare
Jason Nicholson
am 19 Jun. 2014
To be honest, I don't know. What I do know is you can check to see if it gives you the lowest "cost" in the objective function. You can also read the help on the different algorithms available. Some of the algorithms do not use a gradient. Some do. Some can handle discontinuous cost functions. Good luck.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Surrogate Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!