L U decomposition

48 Ansichten (letzte 30 Tage)
John
John am 15 Feb. 2011
Kommentiert: Edmar am 25 Feb. 2024
Below I have a code written for solving the L U decomposition of a system of equations however I need my code to just output the answers with this format it outputs the variables in the matrix for example i need the function to output x [1;2;3;4] any suggestions?
function[L,U,X]=LU_Parker(A,B)
[m n]=size(A);
if (m ~= n )
disp ( 'LR2 error: Matrix must be square' );
return;
end;
% Part 2 : Decomposition of matrix into L and U
L=zeros(m,m);
U=zeros(m,m);
for i=1:m
% Finding L
for k=1:i-1
L(i,k)=A(i,k);
for j=1:k-1
L(i,k)= L(i,k)-L(i,j)*U(j,k);
end
L(i,k) = L(i,k)/U(k,k);
end
% Finding U
for k=i:m
U(i,k) = A(i,k);
for j=1:i-1
U(i,k)= U(i,k)-L(i,j)*U(j,k);
end
end
end
for i=1:m
L(i,i)=1;
end
% Program shows U and L
U
L
% Now use a vector y to solve 'Ly=b'
y=zeros(m,1);
y(1)=B(1)/L(1,1);
for i=2:m
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
y(i)=(B(i)+y(i))/L(i,i);
end;
end;
% Now we use this y to solve Ux = y
x=zeros(m,1);
x(1)=y(1)/U(1,1);
for i=2:m
x(i)=-U(i,1)*x(1);
for k=i:m
x(i)=x(i)-U(i,k)*x(k);
x(i)=(y(i)+x(i))/U(i,i);
end;
end
  2 Kommentare
Daz
Daz am 3 Feb. 2015
Aren't you going to get a divide by 0 error? At the very end of what I quoted, you have L(i,k) = L(i,k)/U(k,k);
But the first time through, U is a zero matrix.
L=zeros(m,m); U=zeros(m,m); for i=1:m % Finding L for k=1:i-1 L(i,k)=A(i,k); for j=1:k-1 L(i,k)= L(i,k)-L(i,j)*U(j,k); end L(i,k) = L(i,k)/U(k,k); end
ela mti
ela mti am 17 Nov. 2020
is "i" a counter that shows how many time should loop be done?could you explain that to me?and also "k" and "j" are counter for rows and coluomn?is that so?

Melden Sie sich an, um zu kommentieren.

Antworten (7)

Oleg Komarov
Oleg Komarov am 15 Feb. 2011
Matlab is case-sensitive, if you want to store the output of x then in the first line change X to lowercase.
Oleg

Mohamed Said Attia
Mohamed Said Attia am 4 Jun. 2011
*there is a problem with the way you are solving the equation to get y & x try*
% Now use a vector y to solve 'Ly=b'
y=zeros(m,1); % initiation for y
y(1)=B(1)/L(1,1);
for i=2:m
%y(i)=B(i)-L(i,1)*y(1)-L(i,2)*y(2)-L(i,3)*y(3);
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
end;
y(i)=(B(i)+y(i))/L(i,i);
end;
y
% Now we use this y to solve Ux = y
x=zeros(m,1);
x(m)=y(m)/U(m,m);
i=m-1;
q=0;
while (i~= 0)
x(i)=-U(i,m)*x(m);
q=i+1;
while (q~=m)
x(i)=x(i)-U(i,q)*x(q);
q=q+1;
end;
x(i)=(y(i)+x(i))/U(i,i);
i=i-1;
end;
x
  3 Kommentare
THEOPHILUS GODFREEY
THEOPHILUS GODFREEY am 12 Mai 2021
undefined function or variable m
Walter Roberson
Walter Roberson am 12 Mai 2021
Refer back to the original question; the Answer here only shows the changes instead of copying everything before then as well.

Melden Sie sich an, um zu kommentieren.


Mohamed Said Attia
Mohamed Said Attia am 4 Jun. 2011
and when you call the function from matlab use
[L,U,X]=LU_Parker(A,B) not LU_Parker(A,B)
  1 Kommentar
Walter Roberson
Walter Roberson am 4 Jun. 2011
Not really relevant: if you do not specify output variables and do not put a semi-colon at the end of the line, you will get
ans =
for each of the output variables, in left-to-right order.

Melden Sie sich an, um zu kommentieren.


John
John am 15 Feb. 2011
I tried this but it still outputs my answer the same way, I originally had it as a lowercase x but I changed it to upper case after I realized it didn't change anything.
  1 Kommentar
Oleg Komarov
Oleg Komarov am 15 Feb. 2011
Then can you post the undesired result and the desired one? It's not very clear from your first description.

Melden Sie sich an, um zu kommentieren.


Tan Edwin
Tan Edwin am 15 Feb. 2011
Maybe u can try adding X=x to allow it to ouput the values of x?
not sure if this is what u want.
edwin

John
John am 15 Feb. 2011
Yes, redefining the x like you said allowed the function to output what I was needing, however I must have an error in my coding because I inputed the following matrices and got the following answer but I am getting a 0 for one of the answers which should not be there. Any possible solutions?
INPUT
A=[ 6 0 0 0 0; 0 1 0 -2 0; 1 0 -3 0 0; 0 8 -4 -3 -2; 0 2 0 0 -1];
B=[1;0;0;1;0];
LU_Parker(A,B)
Output:
X =
0.1667
0
0.0432
0.1841
1.7778
ans =
1.0000 0 0 0 0
0 1.0000 0 0 0
0.1667 0 1.0000 0 0
0 8.0000 1.3333 1.0000 0
0 2.0000 0 0.3077 1.0000

Mahesh Prajapati
Mahesh Prajapati am 21 Sep. 2020
Bearbeitet: Walter Roberson am 30 Dez. 2020
any suggestions?
function[L,U,X]=LU_Parker(A,B)
[m n]=size(A);
if (m ~= n ) disp ( 'LR2 error: Matrix must be square' ); return; end;
% Part 2 : Decomposition of matrix into L and U
L=zeros(m,m);
U=zeros(m,m);
for i=1:m
% Finding L
for k=1:i-1
L(i,k)=A(i,k);
for j=1:k-1
L(i,k)= L(i,k)-L(i,j)*U(j,k);
end
L(i,k) = L(i,k)/U(k,k);
end
% Finding U
for k=i:m
U(i,k) = A(i,k);
for j=1:i-1
U(i,k)= U(i,k)-L(i,j)*U(j,k);
end
end
end
for i=1:m
L(i,i)=1;
end
% Program shows U and L U L
% Now use a vector y to solve 'Ly=b'
y=zeros(m,1);
y(1)=B(1)/L(1,1);
for i=2:m
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
y(i)=(B(i)+y(i))/L(i,i);
end;
end;
% Now we use this y to solve Ux = y
x=zeros(m,1);
x(1)=y(1)/U(1,1);
for i=2:m
x(i)=-U(i,1)*x(1);
for k=i:m
x(i)=x(i)-U(i,k)*x(k);
x(i)=(y(i)+x(i))/U(i,i);
end;
end
  3 Kommentare
Gudi Vara Prasad
Gudi Vara Prasad am 20 Apr. 2021
Bearbeitet: Gudi Vara Prasad am 20 Apr. 2021
% There is some mistake with the Back Substituion at the end in the above code. Please check it again..
clc;
clear all;
close all;
format 'short';
% input:
% A = coefficient matrix
% B = right hand side vector
% output:
% x = solution vector
disp('Application of LU Decomposition')
tic
A = % user input
B = % user input
[m, n] = size(A);
if m ~= n, error('Matrix A must be square'); end
% Decomposition of matrix into L and U :
L=zeros(m,m);
U=zeros(m,m);
for i=1:m
% Finding L
for k=1:i-1
L(i,k)=A(i,k);
for j=1:k-1
L(i,k)= L(i,k)-L(i,j)*U(j,k);
end
L(i,k) = L(i,k)/U(k,k);
end
% Finding U
for k=i:m
U(i,k) = A(i,k);
for j=1:i-1
U(i,k)= U(i,k)-L(i,j)*U(j,k);
end
end
end
for i=1:m
L(i,i)=1;
end
% Program shows U and L U L :
% Now use a vector y to solve 'Ly=b' :
y=zeros(m,1);
y(1)=B(1)/L(1,1);
for i=2:m
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
y(i)=(B(i)+y(i))/L(i,i);
end
end
fprintf("Lower Decomposition Traingle = ")
L
fprintf("Upper Decomposition Traingle = ")
U
% Now we use this y to solve Ux = y
% x=zeros(m,1);
% x(1)=y(1)/U(1,1);
% for i=2:m
% x(i)=-U(i,1)*x(1);
% for k=i:m
% x(i)=x(i)-U(i,k)*x(k);
% x(i)=(y(i)+x(i))/U(i,i);
% end
% end
% Back substitution :
x = zeros(n, 1);
AM = [U B];
x(n) = AM(n, n+1) / AM(n, n);
for i = n - 1: - 1:1
x(i) = (AM(i, n+1) - AM(i, i + 1:n) * x(i + 1:n)) / AM(i, i);
end
fprintf("Solution of the system is = ")
x
Edmar
Edmar am 25 Feb. 2024
Do you have sample of code in LU Decomposition for a 24x24 matrix using MatLab

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Statistics and Linear Algebra finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by