L U decomposition
48 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Below I have a code written for solving the L U decomposition of a system of equations however I need my code to just output the answers with this format it outputs the variables in the matrix for example i need the function to output x [1;2;3;4] any suggestions?
function[L,U,X]=LU_Parker(A,B)
[m n]=size(A);
if (m ~= n )
disp ( 'LR2 error: Matrix must be square' );
return;
end;
% Part 2 : Decomposition of matrix into L and U
L=zeros(m,m);
U=zeros(m,m);
for i=1:m
% Finding L
for k=1:i-1
L(i,k)=A(i,k);
for j=1:k-1
L(i,k)= L(i,k)-L(i,j)*U(j,k);
end
L(i,k) = L(i,k)/U(k,k);
end
% Finding U
for k=i:m
U(i,k) = A(i,k);
for j=1:i-1
U(i,k)= U(i,k)-L(i,j)*U(j,k);
end
end
end
for i=1:m
L(i,i)=1;
end
% Program shows U and L
U
L
% Now use a vector y to solve 'Ly=b'
y=zeros(m,1);
y(1)=B(1)/L(1,1);
for i=2:m
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
y(i)=(B(i)+y(i))/L(i,i);
end;
end;
% Now we use this y to solve Ux = y
x=zeros(m,1);
x(1)=y(1)/U(1,1);
for i=2:m
x(i)=-U(i,1)*x(1);
for k=i:m
x(i)=x(i)-U(i,k)*x(k);
x(i)=(y(i)+x(i))/U(i,i);
end;
end
2 Kommentare
Daz
am 3 Feb. 2015
Aren't you going to get a divide by 0 error? At the very end of what I quoted, you have L(i,k) = L(i,k)/U(k,k);
But the first time through, U is a zero matrix.
L=zeros(m,m); U=zeros(m,m); for i=1:m % Finding L for k=1:i-1 L(i,k)=A(i,k); for j=1:k-1 L(i,k)= L(i,k)-L(i,j)*U(j,k); end L(i,k) = L(i,k)/U(k,k); end
ela mti
am 17 Nov. 2020
is "i" a counter that shows how many time should loop be done?could you explain that to me?and also "k" and "j" are counter for rows and coluomn?is that so?
Antworten (7)
Oleg Komarov
am 15 Feb. 2011
Matlab is case-sensitive, if you want to store the output of x then in the first line change X to lowercase.
Oleg
0 Kommentare
Mohamed Said Attia
am 4 Jun. 2011
*there is a problem with the way you are solving the equation to get y & x try*
% Now use a vector y to solve 'Ly=b'
y=zeros(m,1); % initiation for y
y(1)=B(1)/L(1,1);
for i=2:m
%y(i)=B(i)-L(i,1)*y(1)-L(i,2)*y(2)-L(i,3)*y(3);
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
end;
y(i)=(B(i)+y(i))/L(i,i);
end;
y
% Now we use this y to solve Ux = y
x=zeros(m,1);
x(m)=y(m)/U(m,m);
i=m-1;
q=0;
while (i~= 0)
x(i)=-U(i,m)*x(m);
q=i+1;
while (q~=m)
x(i)=x(i)-U(i,q)*x(q);
q=q+1;
end;
x(i)=(y(i)+x(i))/U(i,i);
i=i-1;
end;
x
3 Kommentare
Walter Roberson
am 12 Mai 2021
Refer back to the original question; the Answer here only shows the changes instead of copying everything before then as well.
Mohamed Said Attia
am 4 Jun. 2011
and when you call the function from matlab use
[L,U,X]=LU_Parker(A,B) not LU_Parker(A,B)
1 Kommentar
Walter Roberson
am 4 Jun. 2011
Not really relevant: if you do not specify output variables and do not put a semi-colon at the end of the line, you will get
ans =
for each of the output variables, in left-to-right order.
John
am 15 Feb. 2011
1 Kommentar
Oleg Komarov
am 15 Feb. 2011
Then can you post the undesired result and the desired one? It's not very clear from your first description.
Tan Edwin
am 15 Feb. 2011
Maybe u can try adding X=x to allow it to ouput the values of x?
not sure if this is what u want.
edwin
0 Kommentare
Mahesh Prajapati
am 21 Sep. 2020
Bearbeitet: Walter Roberson
am 30 Dez. 2020
any suggestions?
function[L,U,X]=LU_Parker(A,B)
[m n]=size(A);
if (m ~= n ) disp ( 'LR2 error: Matrix must be square' ); return; end;
% Part 2 : Decomposition of matrix into L and U
L=zeros(m,m);
U=zeros(m,m);
for i=1:m
% Finding L
for k=1:i-1
L(i,k)=A(i,k);
for j=1:k-1
L(i,k)= L(i,k)-L(i,j)*U(j,k);
end
L(i,k) = L(i,k)/U(k,k);
end
% Finding U
for k=i:m
U(i,k) = A(i,k);
for j=1:i-1
U(i,k)= U(i,k)-L(i,j)*U(j,k);
end
end
end
for i=1:m
L(i,i)=1;
end
% Program shows U and L U L
% Now use a vector y to solve 'Ly=b'
y=zeros(m,1);
y(1)=B(1)/L(1,1);
for i=2:m
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
y(i)=(B(i)+y(i))/L(i,i);
end;
end;
% Now we use this y to solve Ux = y
x=zeros(m,1);
x(1)=y(1)/U(1,1);
for i=2:m
x(i)=-U(i,1)*x(1);
for k=i:m
x(i)=x(i)-U(i,k)*x(k);
x(i)=(y(i)+x(i))/U(i,i);
end;
end
3 Kommentare
Gudi Vara Prasad
am 20 Apr. 2021
Bearbeitet: Gudi Vara Prasad
am 20 Apr. 2021
% There is some mistake with the Back Substituion at the end in the above code. Please check it again..
clc;
clear all;
close all;
format 'short';
% input:
% A = coefficient matrix
% B = right hand side vector
% output:
% x = solution vector
disp('Application of LU Decomposition')
tic
A = % user input
B = % user input
[m, n] = size(A);
if m ~= n, error('Matrix A must be square'); end
% Decomposition of matrix into L and U :
L=zeros(m,m);
U=zeros(m,m);
for i=1:m
% Finding L
for k=1:i-1
L(i,k)=A(i,k);
for j=1:k-1
L(i,k)= L(i,k)-L(i,j)*U(j,k);
end
L(i,k) = L(i,k)/U(k,k);
end
% Finding U
for k=i:m
U(i,k) = A(i,k);
for j=1:i-1
U(i,k)= U(i,k)-L(i,j)*U(j,k);
end
end
end
for i=1:m
L(i,i)=1;
end
% Program shows U and L U L :
% Now use a vector y to solve 'Ly=b' :
y=zeros(m,1);
y(1)=B(1)/L(1,1);
for i=2:m
y(i)=-L(i,1)*y(1);
for k=2:i-1
y(i)=y(i)-L(i,k)*y(k);
y(i)=(B(i)+y(i))/L(i,i);
end
end
fprintf("Lower Decomposition Traingle = ")
L
fprintf("Upper Decomposition Traingle = ")
U
% Now we use this y to solve Ux = y
% x=zeros(m,1);
% x(1)=y(1)/U(1,1);
% for i=2:m
% x(i)=-U(i,1)*x(1);
% for k=i:m
% x(i)=x(i)-U(i,k)*x(k);
% x(i)=(y(i)+x(i))/U(i,i);
% end
% end
% Back substitution :
x = zeros(n, 1);
AM = [U B];
x(n) = AM(n, n+1) / AM(n, n);
for i = n - 1: - 1:1
x(i) = (AM(i, n+1) - AM(i, i + 1:n) * x(i + 1:n)) / AM(i, i);
end
fprintf("Solution of the system is = ")
x
Edmar
am 25 Feb. 2024
Do you have sample of code in LU Decomposition for a 24x24 matrix using MatLab
Siehe auch
Kategorien
Mehr zu Statistics and Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!