fit pressure temperature data in antoine equation using the command lsqnonlin
    14 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Devyani
 am 12 Jun. 2014
  
    
    
    
    
    Kommentiert: Star Strider
      
      
 am 21 Sep. 2022
            I want to fit pressure temperature data in antoine equation using the command lsqnonlin.The objective function is the minimization of the data available and data computed using the equation.The parameters of the equation are estimated after the minimization is done using this command.
Pressure=[1 5 10 20 40 60 100 200 400 760]
temp=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5]
Antoine eqaution:
ln P=A+B/(T+C)
where A,B and C are the parameters to be estimated. I am not able to write the function file properly.When i call the function file to the command lsqnonlin ,it shows error. help on the use of this command with the mention of the function file
3 Kommentare
Akzeptierte Antwort
  Star Strider
      
      
 am 12 Jun. 2014
        First, lsqnonlin isn’t primarily intended for curve fitting. The lsqcurvefit function is, so use it instead.
I restated your ‘Antione’ function as a more convenient ‘anonymous function’, and used lsqcurvefit:
x=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5];
y=[1 5 10 20 40 60 100 200 400 760];
Antoine = @(c0,x) exp(c0(1)+(c0(2)./(x+c0(3))));
c0 = ones(3,1);
C0 = lsqcurvefit(Antoine, c0, x, y)
to produce:
C0 =
       5.1897e+000
       3.8765e+000
       1.9997e+000
7 Kommentare
  Star Strider
      
      
 am 13 Jun. 2014
				Again, my pleasure!
I still recommend lsqcurvefit for the sort of study you’re doing. Easier.
Weitere Antworten (2)
  Carsten
 am 7 Jul. 2014
        
      Bearbeitet: Carsten
 am 7 Jul. 2014
  
      I don't think that this is the solution for the problem. If i use the C0 values to calculate the antoine equation, it doesn't fit the given data.
x=[-59.4 -40.5 -31.1 -20.8 -9.4 -2.0 7.7 22.7 39.5 56.5];
y=[1 5 10 20 40 60 100 200 400 760];
Antoine = @(c0,x) exp(c0(1)+(c0(2)./(x+c0(3))));
c0 = ones(3,1);
C0 = lsqcurvefit(Antoine, c0, x, y)
ant=exp(C0(1)+(C0(2)./(x+C0(3))));
figure
hold on
grid
set(gca,'FontSize',14)
plot(x,y,'b');
plot(x,ant,'r');

0 Kommentare
  Luiz Augusto Meleiro
 am 21 Sep. 2022
        This method is highly sensitive to initial guess.
Try this:
A = 10;
B = -2000;
C = 200;
c0 = [ A; B; C ];
1 Kommentar
  Star Strider
      
      
 am 21 Sep. 2022
				‘This method is highly sensitive to initial guess.’  
That is a characteristic of all nonlinear parameter estimation techniques.  In the eight years since this appeared, I now routinely use the ga and similar approaches in the Global Optimization Toolbox to determine the best parameter estimates.  It helps to know the approximate parameter magnitudes and ranges at the outset to be certain the estimated parameters are realistic.  
Siehe auch
Kategorien
				Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!