Defining a function (including vector dot product) for all the points in 3D

2 Ansichten (letzte 30 Tage)
I am trying to build the following function in a three dimensional domain.
where k is a constant vector, X is the position vector, c is a constant number, and t is time.
k is a vector of size [1 3], X is an array of size [NX*NY*NZ 3] that represents the points in the three-dimensional domain, c is a constant, and t is an array of size [1 NT].
The following is the setup of the problem.
dx = 0.1;
dy = 0.5;
dz = 0.1;
[x, y, z] = meshgrid( (1:100)*dx, (1:100)*dy, (1:100)*dz );
X = [x(:) y(:) z(:)];
k = [1 2 3];
c = 0.5;
t = 0:0.1:1;
I thought about using arrayfun and repeating the vector k using repmat and dot it with X in the second dimension but I don't know what I should do for the multiplication of c and t.
In fact, the following loop works but it is very slow (takes 200 seconds on my machine).
f = zeros(numel(X)/3, numel(t));
for n = 1:numel(t)
for i = 1:numel(X)/3
f(i, n) = tan(dot(k, X(i,:)+c*t(n)));
end
end
What would be an efficient way of defining the function for all the points and all the times? The output of this function, for example, looks like an array of size [NX*NY*NZ NT].

Akzeptierte Antwort

Matt J
Matt J am 3 Jun. 2014
f = tan( bsxfun(@plus, X*k(:), c*t) );
  3 Kommentare
Matt J
Matt J am 3 Jun. 2014
Bearbeitet: Matt J am 3 Jun. 2014
X*k(:) computes all the dot(X(i,:),k)'s
For column vector u and row vector v,
Y=bsxfun(@plus, u,v)
computes a matrix Y with Y(i,j)=u(i)+v(j). See "doc bsxfun".
Matt J
Matt J am 3 Jun. 2014
This is probably a bit faster
k = [1 2 3];
c = 0.5;
t = 0:0.1:1;
[x, y, z] = meshgrid( (1:100)*(k(1)*dx),
(1:100)*(k(2)*dy),
(1:100)*(k(3)*dz);
f=tan( bsxfun(@plus, x(:)+y(:)+z(:), ct) );

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

George Papazafeiropoulos
George Papazafeiropoulos am 3 Jun. 2014
Bearbeitet: George Papazafeiropoulos am 3 Jun. 2014
% data
dx = 0.1;
dy = 0.5;
dz = 0.1;
[x, y, z] = meshgrid( (1:100)*dx, (1:100)*dy, (1:100)*dz );
X = [x(:) y(:) z(:)];
k = [1 2 3];
c = 0.5;
t = 0:0.1:1;
lt=length(t);
% engine
u=numel(X)/3;
t=t(ones(u,1),:);
X=repmat(X,lt,1);
t=t(:);
t=t(:,ones(1,3));
u1=sum(k(ones(numel(X)/3,1),:).*(X+c*t),2);
ff=tan(u1);
% result
ff=reshape(ff,u,[])

Kategorien

Mehr zu Matrices and Arrays finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by