"Size inputs must be scalar".

136 Ansichten (letzte 30 Tage)
sadee
sadee am 2 Jun. 2014
Kommentiert: Walter Roberson am 10 Jun. 2023
Hi guys, can someone please explain me. how I can fix the error "size inputs must be scalar". I read some stuff to sort out this error, even after that I could not solve it. I want to plot loglog dt versus error. for this purpose I want that T(number of time grids) will be different for every iteration. and T could have 10,20,30 values even more. here is my code. its a one dim wave equation. Thanks in advance!
N=10;
X = 100;
dx = pi/X;
x(1,:)=0:dx:pi;
c=1;
tfinal=5;
T=10.^(3:5);
dt=tfinal./T;
for i=1:length(T)
t0=0;
t(:,1)= (0:T)'*dt(i);
uexac = zeros(T+1,X+1);
U = zeros(T+1,X+1);
beta=zeros(N,1);
alpha=zeros(N,1);
v0=0;
u0=sin(3*x);
U0=u0;
V0=v0;
U(1,:)=U0;
U(2,:)=dt(i)*V0+ U0;
%exact solution by fourier series
for n= 1:N
beta(n)=2/pi*trapz(x,v0.*cos(n*x));
alpha(n)=2/pi*trapz(x,u0.*sin(n*x));
an=alpha(n)*cos(n*c*t)+beta(n)/(n*c)*sin(n*c*t);
uexac=uexac+ an*sin(n*x);
end
%approximate solution by finite difference method
for j = 3:T+1
U1 = 2*U(j-1,:)-U(j-2,:);
U1=U1(2:end-1);
U2 = U(j-1,1:end-2)-2*U(j-1,2:end-1)+U(j-1,3:end);
U(j,2:end-1) = U1 + U2*c*(dt(i)^2/dx^2);
end
% compute error and store
error(i,1)=(max(max(abs(uexac-U))));
tt(i,1)=dt(i); %store time step size
end
Error using zeros
Size inputs must be scalar.
loglog(tt(:,1),error(:,1),'*');
xlabel('dt','fontSize',8);
ylabel('error','fontSize',8);
  2 Kommentare
Roger Wohlwend
Roger Wohlwend am 2 Jun. 2014
Your code does not run because several variables are missing: tfinal, X, ... So I cannot reproduce the error.
sadee
sadee am 2 Jun. 2014
Roger now I have put the rest variables. You can check

Melden Sie sich an, um zu kommentieren.

Antworten (3)

Henric Rydén
Henric Rydén am 2 Jun. 2014
Bearbeitet: Henric Rydén am 2 Jun. 2014
Here is one problem:
T = [1000 10000 100000]
uexac = zeros(T+1,X+1);
T is a vector. zeros(m,n) creates an m-by-n matrix so m and n need to be scalars, not vectors.
If you want three vectors, you need three commands. Like this
uexac1 = zeros(T(1)+1,X+1);
uexac2 = zeros(T(2)+1,X+1);
uexac3 = zeros(T(3)+1,X+1);
  8 Kommentare
sadee
sadee am 2 Jun. 2014
I have defined N, but it was showing in end of text. Now tried as you said but it's not working
Roger Wohlwend
Roger Wohlwend am 2 Jun. 2014
Then show us the updated code and what error occurs.

Melden Sie sich an, um zu kommentieren.


Suman Ahmed
Suman Ahmed am 22 Nov. 2020
Bearbeitet: Walter Roberson am 10 Jun. 2023
would you please help me to resolve the one error that is size input must be scalar?
A=[-0.0159 0 0.0418 0; 0 -0.011 0 0.0333; 0 0 -0.0419 0; 0 0 0 -0.033];
B=[-0.083325 0; 0 0.0628; 0 0.0479; 0.0312 0];
C=[0.50 0 0 0; 0 0.50 0 0; 0 0 0.50 0; 0 0 0 0];
D=zeros(4,2);
t=100;
t=1:1:t;
Q1=0.00005*ones(1,t);
Q2=0.000004*ones(1,t);
u=[Q1, Q2];
sys=ss(A,B,C,D);
sys_dis=c2d(sys,1);
Ad=sys_dis.a;
Bd=sys_dis.b;
Cd=sys_dis.c;
Dd=sys_dis.d;
Xint=[0; 0 ;0];
X(:,1)=Xint;
Yint=[0; 0 ;0];
y(:,1)=Yint;
for i=1:t-1
[ y(:,i+1), X(:,i+1) ] = out_cal(Ad,Bd,Cd,Dd,(u(i,:))',X(:,i) );
end
% defining output for plotting
h1=y(1,:);
h2=y(2,:);
h3=y(3,:);
% Plotting inputs
figure(1);
subplot(2,1,1);
plot(t,Q1,'r-');
title('Time VS Q_1');
ylabel('Q_1');
xlabel('time(s)');
subplot(2,1,2);
plot(t,Q2,'r-');
title('Time VS Q_2');
ylabel('Q_2');
xlabel('time(s)');
% Plotting outputs
figure(2);
subplot(4,1,1);
plot(t,h1,'r-');
title('Time VS level in the tank1');
ylabel('h1_t');
xlabel('time(s)');
subplot(4,1,2);
plot(t,h2,'r-');
title('Time VS level in the tank2');
ylabel('h2_t');
xlabel('time(s)');
subplot(4,1,3);
plot(t,h3,'r-');
title('Time VS level in the tank3');
ylabel('h3_t');
xlabel('time(s)');
%grid
  2 Kommentare
Steven Lord
Steven Lord am 23 Nov. 2020
t=100;
t=1:1:t;
Q1=0.00005*ones(1,t);
Q2=0.000004*ones(1,t);
t starts off as the value 100, but then on the next line becomes the vector [1, 2, 3, 4, ... 98, 99, 100]. You then try to use that to build a vector.
Since I know you don't want to try to build a 1-by-1-by-2-by-3-by-4-by-...-by-98-by-99-by-100 array (storing each element of the array in a different atom in this universe, you would still fall well short of the number of atoms needed) I have to assume you want to create 100 separate vectors. If so, use a for loop to process each element of t in turn or create a cell array with 100 elements where element k of that cell array corresponds to element k of the vector t.
If you want to create one vector with 100 elements, delete the line of code where you redefine t from being 100 to being the vector.
Suman Ahmed
Suman Ahmed am 23 Nov. 2020
thanks steven, it works now.

Melden Sie sich an, um zu kommentieren.


Elis
Elis am 10 Jun. 2023
% Introduce your personal data here
Dateofbirth = 960920; % yymmdd Use your birth date
% Compute the parameters
d1 = mod(Dateofbirth, 123);
c = d1 + 25;
a = 36 * c + 2 * mod(d1, 20);
b = 24 * c + mod(d1, 20);
% Given Data: do not change the order of links and nodes given in these matrices!
Redarc = [1 2 % Red links (first element of row k is the starting node of the k-th arc, second element the final node)
1 3
2 4
2 5
3 5
3 6
4 7
5 7
5 8
6 8
7 9
8 9];
Bluearc = [2 1 % Blue links (first element of row k is the starting node of the k-th arc, second element the final node)
1 3
4 2
2 5
5 3
3 6
4 7
7 5
5 8
8 6
7 9
9 8];
% Compute node-arc incidence matrix as explained in pages 75-76 of ASKS. Don't remove the last row. Linprog will take care of linear dependency.
numNodes = max(max(Redarc), max(Bluearc)); % Total number of nodes in the networks
numRedArcs = size(Redarc, 1);
numBlueArcs = size(Bluearc, 1);
Ared = zeros(numNodes, numRedArcs);
Error using zeros
Size inputs must be scalar.
Ablue = zeros(numNodes, numBlueArcs);
for i = 1:numRedArcs
startNode = Redarc(i, 1);
endNode = Redarc(i, 2);
Ared(startNode, i) = -1;
Ared(endNode, i) = 1;
end
for i = 1:numBlueArcs
startNode = Bluearc(i, 1);
endNode = Bluearc(i, 2);
Ablue(startNode, i) = -1;
Ablue(endNode, i) = 1;
end
%% Part (a): Minimize link load
% Compute the dimensions of Aeq and beq
numArcs = numRedArcs + numBlueArcs;
numConstraints = numArcs + 1; % Additional constraint for linear dependency
% Define the objective function
c = ones(numArcs, 1);
% Define the equality constraints
Aeq = [Ared; Ablue];
beq = [a; b];
% Add the row for linear dependency
Aeq(numConstraints, :) = 0;
beq(numConstraints) = 0;
% Define the inequality constraints (none in this case)
Ain = [];
bin = [];
% Define the upper and lower bounds (non-negative flow)
ub = Inf(numArcs, 1);
lb = zeros(numArcs, 1);
% Solve the linear programming problem
options = optimoptions('linprog', 'Display', 'off'); % Suppress the output display
Sol = linprog(c, Ain, bin, Aeq, beq, lb, ub, options);
% Extract the optimal flow for red and blue arcs
RedFlow = Sol(1:numRedArcs);
BlueFlow = Sol(numRedArcs + 1:end-1);
% Calculate the link loads (total flow on each link)
LinkLoads = RedFlow + BlueFlow;
% Calculate the maximal load among all links
w = max(LinkLoads);
% Calculate the node loads (total flow on each node)
NodeLoads = Ared(:, 1:numRedArcs) * RedFlow + Ablue(:, 1:numBlueArcs) * BlueFlow;
% Display the results
fprintf('Part (a): Minimize link load\n');
fprintf('Optimal Red Flow: %s\n', mat2str(RedFlow));
fprintf('Optimal Blue Flow: %s\n', mat2str(BlueFlow));
fprintf('Link Loads: %s\n', mat2str(LinkLoads));
fprintf('Maximal Load: %.2f\n', w);
fprintf('Node Loads: %s\n', mat2str(NodeLoads));
%% Part (b): Minimize node load
% Define the objective function
c2 = ones(numNodes, 1);
% Define the equality constraints
Aeq2 = [Ared; Ablue];
beq2 = [a; b];
% Define the inequality constraints (none in this case)
Ain2 = [];
bin2 = [];
% Define the upper and lower bounds (non-negative flow)
ub2 = Inf(numNodes, 1);
lb2 = zeros(numNodes, 1);
% Solve the linear programming problem
Sol2 = linprog(c2, Ain2, bin2, Aeq2, beq2, lb2, ub2, options);
% Extract the optimal flow for red and blue arcs
RedFlow2 = Ared * Sol2;
BlueFlow2 = Ablue * Sol2;
% Calculate the link loads (total flow on each link)
LinkLoads2 = RedFlow2 + BlueFlow2;
% Calculate the maximal load among all links
w2 = max(LinkLoads2);
% Calculate the node loads (total flow on each node)
NodeLoads2 = Sol2;
% Display the results
fprintf('\nPart (b): Minimize node load\n');
fprintf('Optimal Red Flow: %s\n', mat2str(RedFlow2));
fprintf('Optimal Blue Flow: %s\n', mat2str(BlueFlow2));
fprintf('Link Loads: %s\n', mat2str(LinkLoads2));
fprintf('Maximal Load: %.2f\n', w2);
fprintf('Node Loads: %s\n', mat2str(NodeLoads2));
  1 Kommentar
Walter Roberson
Walter Roberson am 10 Jun. 2023
RedArc and BlueArc are something-by-2.
numNodes = max(max(Redarc), max(Bluearc)); % Total number of nodes in the networks
max of a something-by-2 will proceed along the columns, giving a 1 x 2 result. You then use max() with two parameters where each of the parameters is 1 x 2: the result will be element-by-element maximums between the two vectors, so you will get a 1 x 2 result. So numNodes will be 1 x 2.
When you use max(A,B) then that is not the same as max([A,B]) or max([A;B])

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Programming and Mixed-Integer Linear Programming finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by