code of euler's method
26 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Joaquim
am 22 Mai 2014
Beantwortet: Sandip Das
am 28 Jul. 2021
Hi, i follow every protocol steps for euler's method, but my results are too increased and they are not correct. Anyone could see if i´m doing anything wrong? i think it happens because my derivatives are floating too much.
1 Kommentar
Akzeptierte Antwort
George Papazafeiropoulos
am 23 Mai 2014
A simple application of Euler method:
Define the function:
function E=euler(f,a,b,ya,M)
h=(b-a)/M;
Y=zeros(1,M+1);
T=a:h:b;
Y(1)=ya;
for j=1:M
Y(j+1)=Y(j)+h*f(T(j));
end
E=[T' Y'];
end
where - f is the function entered as function handle
- a and b are the left and right endpoints
- ya is the initial condition E(a)
- M is the number of steps
- E=[T' Y'] where T is the vector of abscissas and Y is the vector of ordinates
Then run the code:
f=@(x) x^2;
a=0;
b=10;
ya=0;
M=200;
YY=euler(f,a,b,ya,M)
You can adjust your problem according to the above algorithm.
2 Kommentare
Rachel Lee
am 6 Aug. 2020
How would you find the error between Euler's Method and the Exact Soln using truncation? I think we need the derivative but nothing I do seems to work.
Rachel Lee
am 6 Aug. 2020
%------------------------------------Functions
function [E] = odeEuler(f,a,b,ya,M)
%M is the no of steps taken
h=(b-a)/M;
Y=zeros(1,M+1);
T=a:h:b;
Y(1)=ya; %this value is 4 for this problem
for j=1:M
Y(j+1)=Y(j)+h*f(T(j));
end
E=[T' Y'];
end
%------------------------------------Executable
%goal print out three iterations of this soln
y0 = 4; %initial y value
t = [0 2 4]'; %this is our specific system of t
size = length(t);
fn = @(t)(4/1.3)*(exp(0.8*t) - exp(-0.5*t))+2*exp(-0.5*t);
dfn = @(t) 4*exp(0.8*t) - 0.5 * fn;
h = 2; err = 0; %initial conditions
a = t(1,:);%0
b = t(size,:);%4
[Soln] = odeEuler(fn,a,b,y0,h);
A = t;
B = Soln(:,2);
C = fn(t);
%producing the graph
plot(t,B,t,C);
title('Comparing Linearization Methods')
legend('Eulers Method','Exact Soln: 4/1.3)*(exp(0.8*t) - exp(-0.5*t))+2*exp(-0.5*t)')
%producing a Table with M iterations
Data = [A B C];
VarNames = {'time domain','Eulers Method','Exact Soln'};
T = table(Data(:,1),Data(:,2),Data(:,3),'VariableNames',VarNames)
Weitere Antworten (3)
SkyRazor
am 23 Mai 2014
hello, could you please post your equation and give us some explanations?
0 Kommentare
ahmed abdelmageed
am 4 Mai 2020
function E=euler(f,a,b,ya,M)
h=(b-a)/M;
Y=zeros(1,M+1);
T=a:h:b;
Y(1)=ya;
for j=1:M
Y(j+1)=Y(j)+h*f(T(j));
end
E=[T' Y'];
end
0 Kommentare
Sandip Das
am 28 Jul. 2021
%Published in 19th july 2021
%Sandip Das
clc
clear all
dydt=input('\n Enter the function : ');
x0=input('\n Enter initial value of x : ');
y0=input('\n Enter initial value of y : ');
xn=input('\n Enter the final value of x: ');
h=input('\n Enter the step length h: ');
i=0;
while i<xn
tempy=y0+h*dydt(x0,y0);
tempx=x0+h;
x0=tempx;
y0=tempy;
i=i+h;
end
fprintf('The value of y at t=%f is %f \n',x0,y0);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!