Comparing an analytic solution to a numerical solution (it does not work!)
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
There`s an equation called filament solution by Ostriker. I need to compare his solution to the solution which comes from a system of diferential equation I`m supposed to find a ratio of almost zero. (1e-17) but both curves seems to be the same but they don`t completely match. Am I doing something wrong?
function poisson_values
par=setup;
inits = [1 0 0 ];
Rrange = [1e-03 1e+02];
options = odeset('RelTol',1e-4,'AbsTol',1e-5);
[r, y] = ode23t(@p,Rrange,inits,options,par);
figure(1);
hold on
loglog(r,y(:,1),'g'); grid; xlabel('log(r)') ; ylabel('log(rho)');
Solut(r);
ratio = ( output - y(:,1));
%x_axis = 1:149;
%ratio1= abs(ratio);
figure(2);
plot(abs(ratio),'r'); ylabel('ratio') ; grid ;
legend('ratio');
function Ost_solution = Solut(r,par)
par=setup;
r0 = (par.sigma)./sqrt(4*pi*par.G*par.rho_c);
Ost_solution = (par.rho_c)./(1+(r.^2)./8*(r0.^2)).^2 ;
output = Ost_solution ;
loglog(r,Ost_solution,'b') ; xlabel('log(r)') ; ylabel('log(rho)');
legend('ode45 solver', 'analytic solution');
hold off
end
end
function poisson = p(r,y,par)
rho = y(1);
m = y(2);
g=y(3);
%I = y(4);
poisson = [ -rho.*g;2*pi.*r*rho;rho - g./r];
end
function par=setup
par.rho_c = 1.0 ;
par.G = 1.0;
par.sigma = 1.0 ;
end
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!