Plot the integral of a discrete function
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Good morning, I have to plot the integral of a discrete function (t,df/dt) defined in a file *.txt. I want to plot (t,f). f is an angle. I've tried with the command trapz but it gives only the numeric value of the area. Thanks
0 Kommentare
Antworten (2)
Youssef Khmou
am 14 Mai 2014
Trapz function returns a scalar value, numeric primitive can be calculated using the following function :
function itg=integral(f,dx,smooth);
% INTEGRAL ANS=INTEGRAL(F,DX)
% This function computes the integral of F(X)DX where the integrand
% is specified at discrete points F spaced DX apart (F is a vector,
% DX is a scalar). Simpsons Rule is used, so that the error
% is O(dx^5*F4). (F4 is the 4th derivative of F).
%
% If F is a matrix, then the integration is done for each column.
%
% If F is really spiky, then INTEGRAL(F,DX,'smooth') may
% provide a better looking result (the result is smoothed
% with a 3 point triangular filter).
%
% Author: RP (WHOI) 15/Aug/92
[N,M]=size(f);
if (N==1 | M==1),
N=max(size(f));
itg=zeros(size(f));
itg(1)=0; % first element
itg(2)=(5*f(1)+8*f(2)-f(3))*dx/12; % Parabolic approx to second
itg(3:N)=(f(1:N-2)+4*f(2:N-1)+f(3:N))*dx/3; % Simpsons rule for 2-segment
% intervals
itg(1:2:N)=cumsum(itg(1:2:N)); % Sum up 2-seg integrals
itg(2:2:N)=cumsum(itg(2:2:N));
if (nargin>2), % ... apply smoothing
itg(2:N-1)=(itg(1:N-2)+2*itg(2:N-1)+itg(3:N))/4;
itg(N)= (itg(N-1)+itg(N))/2;
end;
else
itg=zeros(size(f));
itg(1,:)=zeros(1,M);
itg(2,:)=(5*f(1,:)+8*f(2,:)-f(3,:))*dx/12;
itg(3:N,:)=(f(1:N-2,:)+4*f(2:N-1,:)+f(3:N,:))*dx/3;
itg(1:2:N,:)=cumsum(itg(1:2:N,:)); % Sum up 2-seg integrals
itg(2:2:N,:)=cumsum(itg(2:2:N,:));
if (nargin>2), % ... apply smoothing
itg(2:N-1,:)=(itg(1:N-2,:)+2*itg(2:N-1,:)+itg(3:N,:))/4;
itg(N,:)= (itg(N-1,:)+itg(N,:))/2;
end;
end;
Example :
t=0:0.1:10;
y=sin(t);
z=integral(y,0.1);
figure; plot(t,y,t,z);
0 Kommentare
Antonio
am 14 Mai 2014
Bearbeitet: Antonio
am 14 Mai 2014
2 Kommentare
Youssef Khmou
am 14 Mai 2014
the sampling rate is :
DX=dx(300)-dx(299);
FF=integral(F,DX);
figure; plot(dx,F,dx,FF),legend(' F','\int F');

Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!