Porting Colorization using Optimization algorithm to C code and iPhone

1 Ansicht (letzte 30 Tage)
Hello,
Severall days I am struggling to port colorization using optimization algorithm (source and paper can be found here: http://www.cs.huji.ac.il/~yweiss/Colorization/) into C/C++ code and to run under iOS (iPhone/iPad).
Not to mention that automatically generated code by MATLAB Coder does not work correcly and scrables image, which lead me to manually rewrite most of generated C code procedures in order to match MATLAB .m runnable code results.
Let me explain in detail step by step what I am doing (with images output results included) after which I pose my question:
First of all we have input images in RGB24 bit format in form of (m x n x 3):int8 matrices. Lets define one image which b/w and need to be colorised as gI variable.
gI=double(g0)/255; % we take function input and make matrix double and divide matrix by 255, so now we have float values in matrix.
Below is the output to screen -> gI :
Second lets define second image with color RGB markers applied as cI variable.
cI=double(c0)/255; % we take function input and make matrix double and divide matrix by 255, so now we have float values in matrix.
Below is the output to screen -> cI :
gI-cI %Now according to patented algorithm we subtract gI-cI.
Below is the output to screen -> gI-cI :
abs(gI-cI) %Next we take absolute value of the subtraction results.
Below is the output to screen -> abs(gI-cI) :
sum(abs(gI-cI),3) %Next we make sum of matrix cell by 3-rd dimension, which is R,G,B color map in this case.
Below is the output to screen -> sum(abs(gI-cI),3) :
colorIm=(sum(abs(gI-cI),3)>0.01); %Now we take from result only values that are greater than 0.01 float.
colorIm2=double(colorIm); % and convert matrix with booleans to double
Below is the output to screen -> colorIm2 :
sgI=rgb2ntsc(gI); %In next step we convert RGB map *gI* input image to YIQ map NTSC image.
Below is the output to screen -> sgI :
scI=rgb2ntsc(cI); %In next step we convert RGB map *cI* input image to YIQ map NTSC image.
Below is the output to screen -> scI :
ntscIm(:,:,1)=sgI(:,:,1); %In this step we apply Y of YIQ map from *sgI* image to *ntscIm* var.
ntscIm(:,:,2)=scI(:,:,2); %In this step we apply I of YIQ map from *scI* image to *ntscIm* var.
ntscIm(:,:,3)=scI(:,:,3); %In this step we apply Q of YIQ map from *scI* image to *ntscIm* var.
Below is the output to screen -> ntscIm :
max_d=floor(log(min(size(ntscIm,1),size(ntscIm,2)))/log(2)-2);
iu=floor(size(ntscIm,1)/(2^(max_d-1)))*(2^(max_d-1));
ju=floor(size(ntscIm,2)/(2^(max_d-1)))*(2^(max_d-1));
colorIm3(1:iu,1:ju,1)=colorIm2(1:iu,1:ju,1); %Images are reshaped in order to fit in solver rules
ntscIm2=ntscIm(1:iu,1:ju,1:3); %Images are reshaped in order to fit in solver rules
I ended up that all these steps are running correctly on iPhone, while I had severely modify automated code.
Problem goes here, when one of the Solver methods gets executed:
n0=getVolColor(colorIm3,ntscIm2,[],[],[],[],5,1); % This method is provided as C++ MEX functions, and I was able to port it into iOS. I give my altered source below.
%n0=getColorExact(colorIm3,ntscIm2); % this is not supported by MATLAB coder as it uses Sparse Matrices.
So I have problems with getVolColor method ported as C++ function into iOS project.
It builds, executes, but provides totally messed picture...
My C++ Code for GetVolColor function:
#include "getvolcolor.h"
#include "string.h"
#include <cmath>
#include "mg.h"
#include <iostream>
#include "fmg.h"
#include "colorize_emxutil.h"
emxArray_real_T * getvolcolor(emxArray_real_T *pvar0, emxArray_real_T *pvar1, emxArray_real_T *pvar2, emxArray_real_T *pvar3, emxArray_real_T *pvar4, emxArray_real_T *pvar5, double pvar6, double pvar7, emxArray_real_T *n0) {
int size0 = pvar1->size[0];
int size1 = pvar1->size[1];
int sizel;
sizel=3;
const int n=size1;
const int m=size0;
const int k = 1;
int max_d, max_d1,max_d2, in_itr_num, out_itr_num, itr;
int x,y,z;
// if (sizel>3){
// k=sizes[3];
// } else {
// k=1;
// }
max_d1=int(floor(log(n)/log(2)-2)+0.1);
max_d2=int(floor(log(m)/log(2)-2)+0.1);
if (max_d1>max_d2){
max_d=max_d2;
}else{
max_d=max_d1;
}
double *lblImg_pr, *img_pr;
double *res_pr;
double **res_prv;
double *dx_pr,*dy_pr,*idx_pr,*idy_pr;
lblImg_pr=pvar0->data;
img_pr=pvar1->data;
Tensor3d D,G,I;
Tensor3d Dx,Dy,iDx,iDy;
MG smk;
G.set(m,n,k);
D.set(m,n,k);
I.set(m,n,k);
dy_pr=0;
dx_pr=0;
idy_pr=0;
idx_pr=0;
// if (nrhs>6){
in_itr_num=int(pvar6+0.5);
// }else{
// in_itr_num=5;
// }
// if (nrhs>7){
out_itr_num=int(pvar7+0.5);
// }else{
// out_itr_num=2;
// }
Dx.set(m,n,k-1);
Dy.set(m,n,k-1);
iDx.set(m,n,k-1);
iDy.set(m,n,k-1);
for ( z=0; z<(k-1); z++){
for ( y=0; y<n; y++){
for ( x=0; x<m; x++){
Dx(x,y,z)=*dx_pr; dx_pr++;
Dy(x,y,z)=*dy_pr; dy_pr++;
iDx(x,y,z)=*idx_pr; idx_pr++;
iDy(x,y,z)=*idy_pr; idy_pr++;
}
}
}
// int dims[4];
// dims[0]=m; dims[1]=n; dims[2]=3; dims[3]=k;
//double lvar0[m][n][3][k];//=mxCreateNumericArray(4, dims, mxDOUBLE_CLASS, mxREAL);
res_pr=&n0->data[0];
res_prv=new double*[k];
for (z=0; z<k; z++){
res_prv[z]=res_pr+n*m*3*z;
}
for ( z=0; z<k; z++){
for ( y=0; y<n; y++){
for ( x=0; x<m; x++){
I(x,y,z)=lblImg_pr[x+m*y+z*n*m];
G(x,y,z)=img_pr[x+y*m+z*m*n*3];
I(x,y,z)=!I(x,y,z);
}
}
}
for ( z=0; z<k; z++){
for ( y=0; y<n; y++){
for ( x=0; x<m; x++){
(*res_prv[z])=G(x,y,z);
res_prv[z]++;
}
}
}
smk.set(m,n,k,max_d);
smk.setI(I) ;
smk.setG(G);
smk.setFlow(Dx,Dy,iDx,iDy);
for (int t=1; t<3; t++){
for ( z=0; z<k; z++){
for ( y=0; y<n; y++){
for ( x=0; x<m; x++){
D(x,y,z)=img_pr[x+y*m+n*m*t+z*m*n*3];
smk.P()(x,y,z)=img_pr[x+y*m+n*m*t+z*m*n*3];
D(x,y,z)*=(!I(x,y,z));
}
}
}
smk.Div() = D ;
Tensor3d tP2;
if (k==1){
for (itr=0; itr<out_itr_num; itr++){
smk.setDepth(max_d);
Field_MGN(&smk, in_itr_num, 2) ;
smk.setDepth(ceil(max_d/2));
Field_MGN(&smk, in_itr_num, 2) ;
smk.setDepth(2);
Field_MGN(&smk, in_itr_num, 2) ;
smk.setDepth(1);
Field_MGN(&smk, in_itr_num, 4) ;
}
} else{
for (itr=0; itr<out_itr_num; itr++){
smk.setDepth(2);
Field_MGN(&smk, in_itr_num, 2) ;
smk.setDepth(1);
Field_MGN(&smk, in_itr_num, 4) ;
}
}
tP2=smk.P();
for ( z=0; z<k; z++){
for ( y=0; y<n; y++){
for ( x=0; x<m; x++){
(*res_prv[z])=tP2(x,y,z);
res_prv[z]++;
}
}
}
}
return n0;
}

Akzeptierte Antwort

Sven Mixer
Sven Mixer am 13 Mai 2014
Solved by rewriting getcolorvol function.

Weitere Antworten (0)

Kategorien

Mehr zu Image Processing Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by