I need a starting point for choosing "spread" when using newrb()
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Shadan
am 24 Apr. 2014
Kommentiert: Shadan
am 29 Apr. 2014
My data sets consist of 62 inputs and one output and I want to do function approximation. I understand that the optimum "spread" value is usually determined by trial and error. However, I was wondering if there is any way of approximating this value ( just to get a sense of its greatness )? My second question is regarding the minimum number of training samples required when using newrb. Is it just like the feedforward neural networks, the more the better?
Thank you for your support
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 28 Apr. 2014
Bearbeitet: Greg Heath
am 28 Apr. 2014
If you standardize inputs (zscore or mapstd) the unity default is a good starting place.
The best generalization performance comes from using as few hidden neurons as possible.
Search the neural net literature (e.g., comp.ai.neural-nets FAQ) using the terms
overfitting
overtraining
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!