Solving a sine-cosine equation ( Warning: Explicit solution could not be found.)
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I'm trying to solve a symbolic equation (the more solution I get the better is), this is my code:
clear all; close all;
syms x n a;
eq = '(n*a/2 * sin(n*a*x) * sin(a*x/2)^2 - a/2 * sin(a*x) * sin(n*a*x/2)^2) / sin(a*x/2)^4 = 0';
[S]=solve(eq,x)
and I get this message:
Warning: Explicit solution could not be found. > In solve at 83
S =
[ empty sym ]
The function eq has infinite zeros, so what's wrong in my code? Is it possible to get some solutions, let's say in the range -5<x<+5?
Any help is appreciated.
Gianluca
1 Kommentar
Walter Roberson
am 27 Jul. 2011
Do you need symbolic roots? If numeric roots are acceptable then there may be mechanisms to find all the roots within a given range.
Antworten (4)
Giovanni
am 27 Jul. 2011
Hi Gianluca, I don't know if it's possible to limit the solutions to an interval using symbolic algebra. You might want to try solving it numerically? Also, assuming n is an integer:
equation = simple( (n*a/2 * sin(n*a*x) * sin(a*x/2)^2 - a/2 * sin(a*x) * sin(n*a*x/2)^2) / sin(a*x/2)^4 )
equationN = simple( subs(equation,n,3) );
solve(equationN,x)
ans =
0
(2*pi)/(3*a)
-(2*pi)/(3*a)
and so on if you replace n you'll get multiple solutions. It's just a work-around but maybe it'll help?
3 Kommentare
Giovanni
am 27 Jul. 2011
That's what solve outputs... I didn't look at the details of your equation so I am not sure how to answer that, but I would expect the solutions to have some periodicity, right?
Walter Roberson
am 27 Jul. 2011
2*RootOf(tan(Z)*n-tan(n*Z),Z)/a
is the general form.
For n=3, the general solutions are
(set of 4*Pi*Z/a) union set of (2*(Pi+2*Pi*Z)/a)
where Z ranges over all of the integers.
The solutions for higher n are more extensive -- e.g., 10 sets for n=6 .
0 Kommentare
Stefan Wehmeier
am 28 Jul. 2011
There is no closed-form symbolic solution for general n, and for given n nobody can say which solutions are between -5 and 5 without knowing a. If you insert integer values for n, the solution will be found, but the complete (infinite) solution can only be represented in the symbolic engine, not on the matlab level, so you may want to proceed with
evalin(symengine, 'solve(your_equation, x)')
or use feval.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Assumptions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!