Generalized eigenvalue problem

12 Ansichten (letzte 30 Tage)
Sara
Sara am 19 Jul. 2011
Hi!
I'm trying to convert a generalized eigenvalue problem into a normal eigenvalue calculation.
I have this code:
[V,D,flag] = eigs(A, T);
Now I convert it into:
A1 = inv(T)*A;
[V1,D1,flag1] = eigs(A1);
Shouldn't I get the same result? From what I understand in the Matlab documentation, the first equation solves:
A*V = B*V*D
and the second one solves:
A*V = V*D
am I missing something?
Thanks!!
  2 Kommentare
the cyclist
the cyclist am 19 Jul. 2011
Including a small example showing the difference might help.
Sara
Sara am 19 Jul. 2011
First, thanks for your help.
This is not the example I have been working with, but it still doesn't give me the same result.
A = [1 2 3; 4 5 6; 7 8 9];
T = [2 0 0; 0 5 0; 0 0 3];
[V,D,flag] = eigs(A, T);
TT = inv(T);
A1 = inv(T)*A;
[V1,D1,flag1] = eigs(A1);
Thanks again!!

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Walter Roberson
Walter Roberson am 19 Jul. 2011
Is there a particular reason you are using eigs() instead of eig() ? eigs() is intended for large sparse matrices, and by default only returns the first 6 eigenvalues.
  1 Kommentar
Sara
Sara am 19 Jul. 2011
Yes, I'm working with a sparse matrix.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by