how to use fsolve function

14 Ansichten (letzte 30 Tage)
sermet
sermet am 24 Feb. 2014
Bearbeitet: Matt J am 24 Feb. 2014
%I have 3 nonlinear equation. I need to find unknowns I tried fsolve function but I couldn't use it properly, could anyone explain for me how can I use fsolve function?
(-4.71777*10^21)+(2.10263*(10^15)*x0)-(3.49196*(10^8)*(x0^2))+(28*x0^3)+(1.56321*(10^14)*y0)-(3.76035*(10^7)*x0*y0)-(1.16399*(10^8)*y0^2)+(28*x0*y0^2)+(1.11156*(10^15)*z0)-(2.6739*(10^8)*x0*z0)-(1.16399*(10^8)*z0^2)+(28*x0*z0^2)==0
(-7.62057*10^20)+(1.56321*(10^14)*x0)-(1.88017*(10^7)*x0^2)+(1.16012*(10^15)*y0)-(2.32797*(10^8)*x0*y0)+(28*(x0^2)*y0)-(5.64052*(10^7)*y0^2)+(28*y0^3)+(1.7955*(10^14)*z0)-(2.6739*(10^8)*y0*z0)-(1.88017*(10^7)*z0^2)+(28*y0*z0^2)==0
(-5.41882*(10^21)+(1.11156*(10^15)*x0)-(1.33695*(10^8)*x0^2)+(1.7955*(10^14)*y0)-(1.33695*(10^8)*y0^2)+(2.41161*(10^15)*z0)-(2.32797*(10^8)*x0*z0)+(28*(x0^2)*z0)-(3.76035*(10^7)*y0*z0)+(28*(y0^2)*z0)-(4.01085*(10^8)*z0^2)+(28*z0^3)==0
%x0,y0,z0 are the unknowns.
  2 Kommentare
Star Strider
Star Strider am 24 Feb. 2014
Post the code you used.
sermet
sermet am 24 Feb. 2014
function F = myfun(x)
F = [(-4.71777*10^21)+(2.10263*(10^15)*x0)-(3.49196*(10^8)*(x0^2))+(28*x0^3)+(1.56321*(10^14)*y0)-(3.76035*(10^7)*x0*y0)-(1.16399*(10^8)*y0^2)+(28*x0*y0^2)+(1.11156*(10^15)*z0)-(2.6739*(10^8)*x0*z0)-(1.16399*(10^8)*z0^2)+(28*x0*z0^2;(-7.62057*10^20)+(1.56321*(10^14)*x0)-(1.88017*(10^7)*x0^2)+(1.16012*(10^15)*y0)-(2.32797*(10^8)*x0*y0)+(28*(x0^2)*y0)-(5.64052*(10^7)*y0^2)+(28*y0^3)+(1.7955*(10^14)*z0)-(2.6739*(10^8)*y0*z0)-(1.88017*(10^7)*z0^2)+(28*y0*z0^2);(-5.41882*(10^21)+(1.11156*(10^15)*x0)-(1.33695*(10^8)*x0^2)+(1.7955*(10^14)*y0)-(1.33695*(10^8)*y0^2)+(2.41161*(10^15)*z0)-(2.32797*(10^8)*x0*z0)+(28*(x0^2)*z0)-(3.76035*(10^7)*y0*z0)+(28*(y0^2)*z0)-(4.01085*(10^8)*z0^2)+(28*z0^3)]
x0 = [-5; -5]; y0=[1 1] z0=[1 1]
options=optimset('Display','iter');
[x0,y0,z0,fval] = fsolve(@myfun,x0,y0,z0,options) % Call solver

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 24 Feb. 2014
eqn1 = @(x0, y0, z0) (-4.71777*10^21)+(2.10263*(10^15)*x0)-(3.49196*(10^8)*(x0^2))+(28*x0^3)+(1.56321*(10^14)*y0)-(3.76035*(10^7)*x0*y0)-(1.16399*(10^8)*y0^2)+(28*x0*y0^2)+(1.11156*(10^15)*z0)-(2.6739*(10^8)*x0*z0)-(1.16399*(10^8)*z0^2)+(28*x0*z0^2);
eqn2 = @(x0, y0, z0) (-7.62057*10^20)+(1.56321*(10^14)*x0)-(1.88017*(10^7)*x0^2)+(1.16012*(10^15)*y0)-(2.32797*(10^8)*x0*y0)+(28*(x0^2)*y0)-(5.64052*(10^7)*y0^2)+(28*y0^3)+(1.7955*(10^14)*z0)-(2.6739*(10^8)*y0*z0)-(1.88017*(10^7)*z0^2)+(28*y0*z0^2);
eqn3 = @(x0, y0, z0) (-5.41882*(10^21)+(1.11156*(10^15)*x0)-(1.33695*(10^8)*x0^2)+(1.7955*(10^14)*y0)-(1.33695*(10^8)*y0^2)+(2.41161*(10^15)*z0)-(2.32797*(10^8)*x0*z0)+(28*(x0^2)*z0)-(3.76035*(10^7)*y0*z0)+(28*(y0^2)*z0)-(4.01085*(10^8)*z0^2)+(28*z0^3);
fun = @(x) [eqn1(x(1), x(2), x(3)); eqn2(x(1), x(2), x(3)); eqn3(x(1), x(2), x(3))];
now you can fsolve(fun, x0)

Weitere Antworten (1)

Matt J
Matt J am 24 Feb. 2014
Bearbeitet: Matt J am 24 Feb. 2014
Your initial guesses x0, y0, z0 should not be passed in separate scalar arguments to myfun (notice your myfun also accepts only a single input argument vector, as it should!). Also, fsolve will not return the solution vector components as separate scalar arguments.
  2 Kommentare
sermet
sermet am 24 Feb. 2014
could you write the codes I need please
Matt J
Matt J am 24 Feb. 2014
Bearbeitet: Matt J am 24 Feb. 2014
[solution,fval] = fsolve(@myfun,[x0,y0,z0],options) % Call solver

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by