How do I apply exponential and logarithmic curve fitting

117 Ansichten (letzte 30 Tage)
Iro
Iro am 19 Feb. 2014
Kommentiert: yeungor am 25 Sep. 2016
Hi,
I have some scatterplots and I want to check the relationships between the variables which resemble exponential and logarithmic functions. I have tried to use the functions
nlinfit
fittype
fit
but so far not successfully (poor fitting or code not working at all).
How can I check the curves for the above scatters which seem to have the following functions:
y= a*exp(b*x)+c and y=log_a(x)+b
in matlab?
Thanks
Iro
  3 Kommentare
Iro
Iro am 20 Feb. 2014
Bearbeitet: Iro am 20 Feb. 2014
I mean that I make some kind of mistake in the definition of the function when I use nlinfit so the code does not work.
With log_a(x) I mean the logarithm of x with base a.
yeungor
yeungor am 25 Sep. 2016
Have you tried fitting an exponential of the inverse? If x = f(y), then y = f^-1(x) and you can use 'fit' and the 'exp' for an exponential fit.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Star Strider
Star Strider am 22 Feb. 2014
The nlinfit function requires that the first argument of the objective function is the parameter vector and the second the vector of independent variables. Using anonymous functions,
y = a*exp(b*x)+c
becomes
y = @(B,x) B(1).*exp(B(2).*x) + B(3); % B(1) = a, B(2) = b, B(3) = c
For the logarithmic fit, all logs to various bases are simply scaled by a constant. Consider:
a^y = b^x
Taking the log to base a (denoted by loga()) of both sides gives:
y = x*loga(b)
so the log to any base will work.
The anonymous function for your logarithmic regression is then:
y = @(B,x) log(x) + B; % B = b
or alternatively,
y = @(B,x) B(1).*log(x) + B(2);
Those should work with nlinfit.

Weitere Antworten (1)

Danilo NASCIMENTO
Danilo NASCIMENTO am 19 Feb. 2014
You can use cf = fit(x,y,'exp1'); where x and y are your set of points.
  1 Kommentar
Iro
Iro am 20 Feb. 2014
Hi, thanks for your answer. I have used this function for the exxponential scatter but it doesn't give me good fitting. Do you know how I can get into account the constant c in the above equation using fit with 'exp1' ?
Thanks

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by