solving transcendental equation numerically

24 Ansichten (letzte 30 Tage)
vijay
vijay am 16 Jan. 2014
Kommentiert: Azzi Abdelmalek am 16 Jan. 2014
I am trying to solve the 2 transcendental equations for 2 variables A,M for the given L
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A^3 - L*A^2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L*A^2/2*(sqrt(M^2-1) + (M^2-2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2-1)*acos(1/M)-M+1)-1;
can any one help me how to solve it numerically

Antworten (2)

Mischa Kim
Mischa Kim am 16 Jan. 2014
Bearbeitet: Mischa Kim am 16 Jan. 2014
Hello vijay, what are the equations equal to? Zero? In other words,
0 = A^3 - L*A^2.*(sqrt(M.^2 - 1) + M.^2.*acos(1./M)) - PBAR;
0 = L*A^2/2*(sqrt(M^2 - 1) + (M^2 - 2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2 - 1)*acos(1/M) - M+1)-1;
If so, this is a root-finding problem: find A and M such that the two equations are satisfied. There is plenty of literature on solving systems of non-linear equations.
Try Newton-Raphson. The challenge you might run into is to find good starting values for the search, such that the algorithm coverges properly. Also be aware that there could be multiple soulutions to your problem.

Azzi Abdelmalek
Azzi Abdelmalek am 16 Jan. 2014
M=sym('M',[1,5])
A=sym('A',[1 5])
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A.^3 - L.*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L.*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L.^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
solve([equation1;equation2])
  4 Kommentare
vijay
vijay am 16 Jan. 2014
there are solutions for different values of L
for eg:
for L = 5.0
the values for A = 1.800; M = 1.01574;
but i am not able to solve the equations
Azzi Abdelmalek
Azzi Abdelmalek am 16 Jan. 2014
syms A M
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
for k=1:numel(L)
equation1 = A.^3 - L(k).*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L(k).*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L(k).^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
sol=solve([equation1;equation2]);
M1(k,1)=sol.M
A1(k,1)=sol.A
end

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by