h(t)=3∗z(t)^2 , whose maximum and minimum value I find through simulation of 3∗x(t)^2 , where x(t) is system trajectory. z(t) always lies between maximum and minimum value of x(t), this is explained in paper whose link I given above....
How to solve affine Linear Matrix Inequlaity?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
The problem is
I want to solve following LMIs which is affine in h(t) :
A(h(t))'*P-C'*R+P*A(h(t))-R'*C<0; and P>0
where A(h)=[0 1;h(t) -0.1]; C=[0.2 1];
h(t) is a time varying parameter whose maximum and minimum value is 0 and -45.86 P is a symmetric matrix variable of dimension 2x2 R is a matrix variable of dimension 1x2
I am able to solve LMI without varying parameter h(t) using LMI Toolbox, but not able to solve above one. I go through the document of functions pvec, psys, quadstab in MATLAB's Robust Control Toolbox , but they are not addressing the type of problem at which I am stuck.
I want to find the value of matrices P and R such that above LMI is feasible. I am solving the above problem while going through paper for designing observer using differential mean value theorem based approach, the above condition is sufficient to successfully design observer, paper link is : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1583180&queryText%3Dobserver+design+using+diffrential+mean+value+theorem+approach
Antworten (1)
Johan Löfberg
am 16 Jan. 2014
Standard approach is to use a common Lyapunov function, i.e., define two LMIs, one for h = 0 and one for h = -45.86. From convexity, the Lyapunov inequality is satisfied for any h inbetween.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Linear Matrix Inequalities finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!