sigal average power estimation
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Sylvain Rousseau
am 9 Dez. 2013
Bearbeitet: Sylvain Rousseau
am 10 Dez. 2013
Hi !
I've created a snippet to test my insight of power the density spectra computed from the fft matlab function. Unfortunately, I have a factor 4 between average power computed from the signal in the time domain and the average power estimated from the FFT. May I ask you some hints ? Regards. Here my snippet :
N=1024;
Fs=1e3;
Ts=1/Fs;
timeSlot = N*Ts;
tVect = (0:N-1)*Ts;
F_axis = (0:N-1)*Fs/N;
F_axis_Single = F_axis(1:length(F_axis)/2);
A2=2;A=sqrt(A2);
% number of harmonics
nH = 10;
% build a set of nH random frequencies ranged from 0 to Fs/2
freqIDs = sort(round((N/2)*rand(1,nH )));
setOfFreqs = F_axis_Single(freqIDs);
% buid a set of harmonics of frequencies defined above
noiseHarmos = A*sin(2*pi*tVect'*setOfFreqs);
noiseSig = sum(noiseHarmos,2);
% figure;plot(tVect,sigs);
fftSig_Db = fft(noiseSig);
fftSig_Sg = fftSig_Db(1:N/2); % FFT single sided coeff
fftSig_Sg(2:end) = 2*fftSig_Sg(2:end);
% norm of FFT
absFftSig_Sg = abs(fftSig_Sg); % /N to get FFT in V
absFftSig_Sg_V = abs(fftSig_Sg)/N; % /N to get FFT in V
% DSP
dspSigSg = absFftSig_Sg.^2/N;
% Average powa from time domain
powFromSig = mean(noiseSig.^2)
% Average powa from frequency domain
powFromDsp = sum(dspSigSg)/N
0 Kommentare
Akzeptierte Antwort
Suneesh
am 9 Dez. 2013
I guess what you are trying to verify is the validity of Parseval's theorem. Since FFT calculates the Discrete Fourier Transform (but not an (infinitely long) discrete-time Fourier transform ) a scaling is required. Please refer to the following links to clear this up:
1 Kommentar
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Parametric Spectral Estimation finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!