polynomial division issue, how to find the remainder

7 Ansichten (letzte 30 Tage)
aya
aya am 9 Dez. 2013
Beantwortet: M Naeem am 10 Aug. 2023
i have two polynomials like
a=X14 + X13 + X10 + X9
b=X8 + X7 + X6 + X4 + 1
i want to find a mod b using matlab pls.
  3 Kommentare
aya
aya am 9 Dez. 2013
yes x4=x^4 and so on
aya
aya am 10 Dez. 2013
hello sir i am really thankful for your help but i still have problem with polynomial remainder that is what i am doing
a='110011000000000'; aa=bin2dec(a); b='000000111010001'; bb=bin2dec(b); r=rem(aa,bb); re=dec2bin(r)
re =
1001000
the answer re should be 1001 why i am getting these extra zeros by the way a=x^14+x^13+x^10+x^9 and b=x^8+x^7+x^6+x^4+1
another thing when i write them with out making them have the same size i get a totaly different answer

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Roger Stafford
Roger Stafford am 9 Dez. 2013
If your field is that of the real numbers, look at 'deconv' function at:
http://www.mathworks.com/help/matlab/ref/deconv.html
This is a quote from that documentation: "If u and v are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials, and deconvolution is polynomial division. The result of dividing v by u is quotient q and remainder r."
  3 Kommentare
Walter Roberson
Walter Roberson am 9 Dez. 2013
What datatype is c ? Do you mean c = [1 1 0 0 0 1 1 1 ...] or do you mean c = '1100011...' or do you mean c=110001111101010 decimal ?
aya
aya am 9 Dez. 2013
c='110001111101010'

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (2)

Walter Roberson
Walter Roberson am 9 Dez. 2013
Possibly x^6 + x^3 depending on what your formulae mean.
  6 Kommentare
Walter Roberson
Walter Roberson am 9 Dez. 2013
To convert c='110001111101010' to -1 for 1 and 1 for 0, use
2*('0' - c) + 1

Melden Sie sich an, um zu kommentieren.


M Naeem
M Naeem am 10 Aug. 2023
how we divide two polynomials in Polynomial Ring (Z_2[x]) to find the remainde?... let suppose i want to divide x^113 by x^8+x^4+x^3+x^2+1

Kategorien

Mehr zu Polynomials finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by