Solving a Nonlinear Equation using Newton-Raphson Method
407 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hassan Mohamed
am 25 Nov. 2013
Kommentiert: Taha Anum
am 22 Okt. 2023
It's required to solve that equation: f(x) = x.^3 - 0.165*x.^2 + 3.993*10.^-4 using Newton-Raphson Method with initial guess (x0 = 0.05) to 3 iterations and also, plot that function.
Please help me with the code (i have MATLAB R2010a) ... I want the code to be with steps and iterations and if possible calculate the error also, please
4 Kommentare
Rajesh
am 10 Dez. 2022
to solve the given equation (x^2-1)/(x-1) taking minimum values for x and draw the stem graph and step graph
Walter Roberson
am 10 Dez. 2022
You should open your own Question, after reading http://www.mathworks.com/matlabcentral/answers/6200-tutorial-how-to-ask-a-question-on-answers-and-get-a-fast-answer
Akzeptierte Antwort
Bruno Pop-Stefanov
am 25 Nov. 2013
Bearbeitet: MathWorks Support Team
am 27 Sep. 2022
fun = @(x)x^3 - 0.165*x^2 + 3.993e-4;
x_true = fzero(fun,[0.01 0.1],optimset("Display","iter"));
x = 0.1;
x_old = 100;
iter = 0;
while abs(x_old-x) > 1e-10 && iter <= 10 % x ~= 0
x_old = x;
x = x - (x^3 - 0.165*x^2 + 3.993e-4)/(3*x^2 - 0.33*x);
iter = iter + 1;
fprintf('Iteration %d: x=%.18f, err=%.18f\n', iter, x, x_true-x);
pause(1);
end
You can plot the function with, for example:
x = linspace(0,0.1);
f = x.^3 - 0.165*x.^2 + 3.993*10^-4;
figure;
plot(x,f,'b',x,zeros(size(x)),'r--')
grid on
6 Kommentare
Cesar Castro
am 21 Sep. 2021
It did not work , May you help me, please? My F = x(1)^4+x(2)^4+2*x(1)^2*x(2)^2-4*x(1)+3 I Know the root is 1.
I do not know why, it did not work. Thanks in advance.
Weitere Antworten (3)
Dhruv Bhavsar
am 28 Aug. 2020
- Solve the system of non-linear equations.
x^2 + y^2 = 2z
x^2 + z^2 =1/3
x^2 + y^2 + z^2 = 1
using Newton’s method having tolerance = 10^(−5) and maximum iterations upto 20
%Function NewtonRaphson_nl() is given below.
fn = @(v) [v(1)^2+v(2)^2-2*v(3) ; v(1)^2+v(3)^2-(1/3);v(1)^2+v(2)^2+v(3)^2-1];
jacob_fn = @(v) [2*v(1) 2*v(2) -2 ; 2*v(1) 0 2*v(3) ; 2*v(1) 2*v(2) 2*v(3)];
error = 10^-5 ;
v = [1 ;1 ;0.1] ;
no_itr = 20 ;
[point,no_itr,error_out]=NewtonRaphson_nl(v,fn,jacob_fn,no_itr,error)
NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,error);
# OUTPUT.

Functions Below.
function [v1 , no_itr, norm1] = NewtonRaphson_nl(v,fn,jacob_fn,no_itr,error)
% nargin = no. of input arguments
if nargin <5 , no_itr = 20 ; end
if nargin <4 , error = 10^-5;no_itr = 20 ; end
if nargin <3 ,no_itr = 20;error = 10^-5; v = [1;1;1]; end
v1 = v;
fnv1 = feval(fn,v1);
i = 0;
while true
jacob_fnv1 = feval(jacob_fn,v1);
H = jacob_fnv1\fnv1;
v1 = v1 - H;
fnv1 = feval(fn,v1);
i = i + 1 ;
norm1 = norm(fnv1);
if i > no_itr && norm1 < error, break , end
%if norm(fnv1) < error , break , end
end
end
function [v1 , no_itr, norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,error)
v1 = v;
fnv1 = feval(fn,v1);
i = 0;
fprintf(' Iteration| x | y | z | Error | \n')
while true
norm1 = norm(fnv1);
fprintf('%10d |%10.4f| %10.4f | %10.4f| %10.4d |\n',i,v1(1),v1(2),v1(3),norm1)
jacob_fnv1 = feval(jacob_fn,v1);
H = jacob_fnv1\fnv1;
v1 = v1 - H;
fnv1 = feval(fn,v1);
i = i + 1 ;
norm1 = norm(fnv1);
if i > no_itr && norm1 < error, break , end
%if norm(fnv1) < error , break , end
end
end
This covers answer to your question and also queries for some comments I read in this thread.
4 Kommentare
Munish Jindal
am 13 Feb. 2023
Bearbeitet: Munish Jindal
am 13 Feb. 2023
Got this error.
unrecognized function or variable 'NewtonRaphson_nl_print'.
Walter Roberson
am 13 Feb. 2023
the code is given above starting at the line
function [v1 , no_itr, norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,error)
Pourya Alinezhad
am 25 Nov. 2013
you can use the following line of code;
x = fzero(@(x)x.^3 - 0.165*x.^2 + 3.993*10.^-4,0.05)
0 Kommentare
Mohamed Hakim
am 21 Mai 2021
Bearbeitet: Walter Roberson
am 12 Feb. 2022
function NewtonRaphsonMethod
%Implmentaton of Newton-Raphson method to determine a solution.
%to approximate solution to x = cos(x), we let f(x) = x - cos(x)
i = 1;
p0 = 0.5*pi; %initial conditions
N = 100; %maximum number of iterations
error = 0.0001; %precision required
syms 'x'
f(x) = x - cos(x); %function we are solving
df = diff(f); %differential of f(x)
while i <= N
p = p0 - (f(p0)/df(p0)); %Newton-Raphson method
if (abs(p - p0)/abs(p)) < error %stopping criterion when difference between iterations is below tolerance
fprintf('Solution is %f \n', double(p))
return
end
i = i + 1;
p0 = p; %update p0
end
fprintf('Solution did not coverge within %d iterations at a required precision of %d \n', N, error) %error for non-convergence within N iterations
end
1 Kommentar
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!