Pattern Recognition with Perceptron
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi, all
I have six patterns as shown below
A1 = [ -1 -1 1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1;
1 1 1 -1 1 1 1];
B1 = [ 1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1];
C1 = [ -1 -1 1 1 1 1 1 ;
-1 1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
-1 1 -1 -1 -1 -1 1;
-1 -1 1 1 1 1 -1];
A2 = [ -1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1];
B2 = [ 1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1];
C2 = [ -1 -1 1 1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 1;
-1 1 -1 -1 -1 1 -1;
-1 -1 1 1 1 -1 -1];
I have to recognize these patterns with artificial neural network.
I am new in Matlab. Please help!
I need to divide this data into 2 groups.
The first group A1, B1, C1 as training data. The second group A2, B2, C2 used to validate/test the network.
Example : if I select A1 then the output must display 'A', if I select B1 then the output must display 'B', if I select A2 then the output must display 'A'.
. . # # . . .
. . . # . . .
. . . # . . .
. . # . # . .
. . # . # . . => This pattern should be recognized as A
. # # # # # .
. # . . . # .
. # . . . # .
# # # . # # #
In result program, we must explain how to get that. it mean we must explain epochs from start to finish. And Learning Rate = 1 And Threshold Value = 0.5
How do I do that?
Thanks in advance!
Network type is perceptron
2 Kommentare
Greg Heath
am 13 Nov. 2013
Hmm, I submitted an answer to this. Must have made a mistake. Sorry, cannot get back to it until later.
Bottom line was you need a huge amount of input variable reduction.
Greg
Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!