Double precision limit with norm

12 Ansichten (letzte 30 Tage)
Zoltán Csáti
Zoltán Csáti am 29 Okt. 2013
Bearbeitet: Matt J am 29 Okt. 2013
I wrote a Taylor series approach for calculating the natural logarithm of matrix A. When I compared my result with the built-in function logm ( norm(myResult-logm(A),2) ), I got the following: 1.3878e-016. However eps = 2^(-52) = 2.2204e-016 when we use double precision. How can MATLAB determine this value if its maximum precision is lower than the result? Is it a bug? (The estimated norm with normest is 1.9626e-016.)

Akzeptierte Antwort

Matt J
Matt J am 29 Okt. 2013
Bearbeitet: Matt J am 29 Okt. 2013
eps() gives a relative precision limit.
>> eps(1)
ans =
2.2204e-16
>> eps(.001)
ans =
2.1684e-19
Presumably your logm(A) have values much less than 1. You should really be comparing to eps(logm(A)) or maybe to eps(norm(logm(A)).
  2 Kommentare
Zoltán Csáti
Zoltán Csáti am 29 Okt. 2013
For my case:
logm(A) = -0.1438 0.5493 0
0.5493 -0.1438 0
0 0 0
These entries are not much less than 0 (in absolute value).
Matt J
Matt J am 29 Okt. 2013
Bearbeitet: Matt J am 29 Okt. 2013
They're clearly small enough:
>> logmA=[ -0.1438 0.5493 0
0.5493 -0.1438 0
0 0 0];
>> eps(norm(logmA,2))
ans =
1.1102e-16
Looks like your calculation is pretty accurate!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by