Compute Standard Deviation of ROIs
This example shows how to compute the standard deviation of regions-of-interest (ROIs) in the input image. The input image is composed of different texture regions and ROIs are selected to contain these texture regions.
Read an image into the MATLAB workspace.
I = imread('multitextures.png');
Load the mask image that specifies the ROIs in the input image.
load('binaryROI.mat')
Example Model
Open the Simulink model.
modelname='ex_blk2dstd.slx';
open_system(modelname);
The model computes the coordinates for the ROIs by using the Blob
Analysis
block. The maximum number of blobs parameter in the Blob
Analysis
block is set to 5, the number of ROIs.
The 2-D
Standard
Deviation
block computes the standard deviation value for each ROI.
Set these parameters of the 2-D
Standard
Deviation
block to the specified value inorder to compute individual statistics for each ROI.
Set
Find
the
standard
deviation
value
over
parameter toEntire
input
Select
Enable
ROI
processing
parameterSet
ROI
type
parameter toRectangles
Set
Output
parameter toIndividual
statistics
for
each
ROI
Simulate and Display Results
The values of the standard deviation indicate the dispersion of the pixel values in ROI from the corresponding mean value.
out = sim(modelname);
The model also displays the input image and the label matrix that correspond to the selected ROIs. The rectangles overlayed on the input image represents the ROIs for which the standard deviation is computed.
Display the standard deviation value for each ROI. The first standard deviation value correspond to the region with label value 1. Similarly, the second standard deviation value correspond to the region with label value 2 and so on.
out.std
ans = 0.0534 0.1203 0.0775 0.1463 0.1629