wrightOmega
Wright omega function
Syntax
Description
wrightOmega( computes the Wright omega function of
x)x. If z is a matrix,
wrightOmega acts elementwise on z.
Examples
Compute Wright Omega Function of Numeric Inputs
Compute the Wright omega function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:
wrightOmega(1/2)
ans =
0.7662wrightOmega(pi)
ans =
2.3061wrightOmega(-1+i*pi)ans = -1.0000 + 0.0000
Compute Wright Omega Function of Symbolic Numbers
Compute the Wright omega function for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, wrightOmega
returns unresolved symbolic calls:
wrightOmega(sym(1/2))
ans = wrightOmega(1/2)
wrightOmega(sym(pi))
ans = wrightOmega(pi)
For some exact numbers, wrightOmega has special values:
wrightOmega(-1+i*sym(pi))
ans =
-1Compute Wright Omega Function of Symbolic Expression
Compute the Wright omega function for x and
sin(x) + x*exp(x). For symbolic variables and expressions,
wrightOmega returns unresolved symbolic calls:
syms x wrightOmega(x) wrightOmega(sin(x) + x*exp(x))
ans = wrightOmega(x) ans = wrightOmega(sin(x) + x*exp(x))
Compute Derivative of Wright Omega Function
Now compute the derivatives of these expressions:
diff(wrightOmega(x), x, 2) diff(wrightOmega(sin(x) + x*exp(x)), x)
ans = wrightOmega(x)/(wrightOmega(x) + 1)^2 -... wrightOmega(x)^2/(wrightOmega(x) + 1)^3 ans = (wrightOmega(sin(x) + x*exp(x))*(cos(x) +... exp(x) + x*exp(x)))/(wrightOmega(sin(x) + x*exp(x)) + 1)
Compute Wright Omega Function for Matrix Input
Compute the Wright omega function for elements of matrix
M and vector V:
M = [0 pi; 1/3 -pi]; V = sym([0; -1+i*pi]); wrightOmega(M) wrightOmega(V)
ans =
0.5671 2.3061
0.6959 0.0415
ans =
lambertw(0, 1)
-1Input Arguments
More About
References
[1] Corless, R. M. and D. J. Jeffrey. “The Wright omega Function.” Artificial Intelligence, Automated Reasoning, and Symbolic Computation (J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, eds.). Berlin: Springer-Verlag, 2002, pp. 76-89.
Version History
Introduced in R2011b