wrightOmega
Wright omega function
Syntax
Description
wrightOmega(
computes the Wright omega function of
x
)x
. If z
is a matrix,
wrightOmega
acts elementwise on z
.
Examples
Compute Wright Omega Function of Numeric Inputs
Compute the Wright omega function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:
wrightOmega(1/2)
ans = 0.7662
wrightOmega(pi)
ans = 2.3061wrightOmega(-1+i*pi)
ans = -1.0000 + 0.0000
Compute Wright Omega Function of Symbolic Numbers
Compute the Wright omega function for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, wrightOmega
returns unresolved symbolic calls:
wrightOmega(sym(1/2))
ans = wrightOmega(1/2)
wrightOmega(sym(pi))
ans = wrightOmega(pi)
For some exact numbers, wrightOmega
has special values:
wrightOmega(-1+i*sym(pi))
ans = -1
Compute Wright Omega Function of Symbolic Expression
Compute the Wright omega function for x
and
sin(x) + x*exp(x)
. For symbolic variables and expressions,
wrightOmega
returns unresolved symbolic calls:
syms x wrightOmega(x) wrightOmega(sin(x) + x*exp(x))
ans = wrightOmega(x) ans = wrightOmega(sin(x) + x*exp(x))
Compute Derivative of Wright Omega Function
Now compute the derivatives of these expressions:
diff(wrightOmega(x), x, 2) diff(wrightOmega(sin(x) + x*exp(x)), x)
ans = wrightOmega(x)/(wrightOmega(x) + 1)^2 -... wrightOmega(x)^2/(wrightOmega(x) + 1)^3 ans = (wrightOmega(sin(x) + x*exp(x))*(cos(x) +... exp(x) + x*exp(x)))/(wrightOmega(sin(x) + x*exp(x)) + 1)
Compute Wright Omega Function for Matrix Input
Compute the Wright omega function for elements of matrix
M
and vector V
:
M = [0 pi; 1/3 -pi]; V = sym([0; -1+i*pi]); wrightOmega(M) wrightOmega(V)
ans = 0.5671 2.3061 0.6959 0.0415 ans = lambertw(0, 1) -1
Input Arguments
More About
References
[1] Corless, R. M. and D. J. Jeffrey. “The Wright omega Function.” Artificial Intelligence, Automated Reasoning, and Symbolic Computation (J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, eds.). Berlin: Springer-Verlag, 2002, pp. 76-89.
Version History
Introduced in R2011b