powermod
Modular exponentiation
Syntax
Description
c = powermod(
returns the modular exponentiation ab mod m. The input a,b,m)a,b must be integers, and
m must be a nonnegative integer. For more information, see
Modular Exponentiation.
Examples
Compute the modular exponentiation ab mod m by using powermod. The
powermod function is efficient because it does not
calculate the exponential ab.
c = powermod(3,5,7)
c =
5Fermat's little theorem states that if p is prime and a is not divisible by p, then a(p–1) mod p is 1.
Test Fermat's little theorem for p = 5, a =
3. As expected, powermod returns
1.
p = 5; a = 3; c = powermod(a,p-1,p)
c = 1
Test the same case for all values of a less than
p. The function powermod acts
element-wise to return a vector of ones.
p = 5; a = 1:p-1; c = powermod(a,p-1,p)
c =
1 1 1 1Fermat's little theorem states that if p is a prime number and a is not divisible by p, then a(p–1) mod p is 1. On the contrary, if a(p–1) mod p is 1 and a is not divisible by p, then p is not always a prime number (p can be a pseudoprime).
Test numbers from 300 to 400 for
primality by using Fermat's little theorem with base
2.
p = 300:400; remainder = powermod(2,p-1,p); primesFermat = p(remainder == 1)
primesFermat = 307 311 313 317 331 337 341 347 349 353... 359 367 373 379 383 389 397
Find Fermat pseudoprimes by comparing the results with
isprime. 341 is a Fermat
pseudoprime.
primeNumbers = p(isprime(p)); setdiff(primesFermat,primeNumbers)
ans = 341
Input Arguments
Base, specified as a number, vector, matrix, array, or a symbolic number
or array. a must be an integer.
Exponent or power, specified as a number, vector, matrix, array, or a
symbolic number or array. b must be an integer.
Divisor, specified as a number, vector, matrix, array, or a symbolic
number or array. m must be a nonnegative
integer.
More About
For a positive exponent b, the modular exponentiation c is defined as
c = ab mod m.
For a negative exponent b, the definition can be extended by finding the modular multiplicative inverse d of a modulo m, that is
c = d ‒b mod m.
where d satisfies the relation
ad mod m = 1.
Version History
Introduced in R2018a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)