orth
Orthonormal basis for range of symbolic matrix
Description
orth(
computes an orthonormal basis for the range of
A
)A
.
orth(
computes
an orthonormal basis using a real scalar product in the orthogonalization process.A
,'real'
)
orth(
computes a non-normalized orthogonal basis. In this case, the vectors forming the columns of
A
,'skipnormalization'
)B
do not necessarily have length 1.
Examples
Compute Orthonormal Basis
Compute an orthonormal basis of the range of this matrix. Because these numbers are not symbolic objects, you get floating-point results.
A = [2 -3 -1; 1 1 -1; 0 1 -1]; B = orth(A)
B = -0.9859 -0.1195 0.1168 0.0290 -0.8108 -0.5846 0.1646 -0.5729 0.8029
Now, convert this matrix to a symbolic object, and compute an orthonormal basis:
A = sym([2 -3 -1; 1 1 -1; 0 1 -1]); B = orth(A)
B = [ (2*5^(1/2))/5, -6^(1/2)/6, -(2^(1/2)*15^(1/2))/30] [ 5^(1/2)/5, 6^(1/2)/3, (2^(1/2)*15^(1/2))/15] [ 0, 6^(1/2)/6, -(2^(1/2)*15^(1/2))/6]
You can use double
to convert this result to the
double-precision numeric form. The resulting matrix differs from the matrix returned by the
MATLAB®
orth
function because these functions use different versions of the
Gram-Schmidt orthogonalization algorithm:
double(B)
ans = 0.8944 -0.4082 -0.1826 0.4472 0.8165 0.3651 0 0.4082 -0.9129
Verify that B'*B = I
, where I
is the identity
matrix:
B'*B
ans = [ 1, 0, 0] [ 0, 1, 0] [ 0, 0, 1]
Now, verify that the 2-norm of each column of B
is 1:
norm(B(:, 1)) norm(B(:, 2)) norm(B(:, 3))
ans = 1 ans = 1 ans = 1
Compute Real Orthonormal Basis
Compute an orthonormal basis of this matrix using
'real'
to avoid complex conjugates:
syms a A = [a 1; 1 a]; B = orth(A,'real')
B = [ a/(a^2 + 1)^(1/2), -(a^2 - 1)/((a^2 + 1)*((a^2 -... 1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^2)/(a^2 + 1)^2)^(1/2))] [ 1/(a^2 + 1)^(1/2), (a*(a^2 - 1))/((a^2 + 1)*((a^2 -... 1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^2)/(a^2 + 1)^2)^(1/2))]
Compute Orthogonal Basis by Skipping Normalization
Compute an orthogonal basis of this matrix using
'skipnormalization'
. The lengths of the resulting vectors (the
columns of matrix B
) are not required to be 1
syms a A = [a 1; 1 a]; B = orth(A,'skipnormalization')
B = [ a, -(a^2 - 1)/(a*conj(a) + 1)] [ 1, -(conj(a) - a^2*conj(a))/(a*conj(a) + 1)]
Compute Real Orthogonal Basis
Compute an orthogonal basis of this matrix using
'skipnormalization'
and 'real'
:
syms a A = [a 1; 1 a]; B = orth(A,'skipnormalization','real')
B = [ a, -(a^2 - 1)/(a^2 + 1)] [ 1, (a*(a^2 - 1))/(a^2 + 1)]
Input Arguments
More About
Tips
Calling
orth
for numeric arguments that are not symbolic objects invokes the MATLABorth
function. Results returned by MATLABorth
can differ from results returned byorth
because these two functions use different algorithms to compute an orthonormal basis. The Symbolic Math Toolbox™orth
function uses the classic Gram-Schmidt orthogonalization algorithm. The MATLABorth
function uses the modified Gram-Schmidt algorithm because the classic algorithm is numerically unstable.Using
'skipnormalization'
to compute an orthogonal basis instead of an orthonormal basis can speed up your computations.
Algorithms
orth
uses the classic Gram-Schmidt orthogonalization
algorithm.
Version History
Introduced in R2013a