fsurf
Plot 3-D surface
Syntax
Description
fsurf(
creates a
surface plot of the symbolic expression f
)f(x,y)
over
the default interval [-5 5]
for x
and y
.
fsurf(
plots f
,[xmin xmax
ymin ymax]
)f(x,y)
over the interval [xmin xmax]
for x
and [ymin ymax]
for
y
. The fsurf
function uses
symvar
to order the variables and assign intervals.
fsurf(
plots
the parametric surface funx,funy,funz
)x = x(u,v)
, y =
y(u,v)
, z = z(u,v)
over the interval [-5
5]
for u
and v
.
fsurf(
plots the parametric surface funx,funy,funz
,[uvmin
uvmax]
)x
= x(u,v)
, y = y(u,v)
, z = z(u,v)
over
the interval [uvmin uvmax]
for u
and v
.
fsurf(
plots the parametric surface funx,funy,funz
,[umin
umax vmin vmax]
)x = x(u,v)
, y =
y(u,v)
, z = z(u,v)
over the interval
[umin umax]
for u
and [vmin
vmax]
for v
. The fsurf
function uses
symvar
to order the parametric variables and assign intervals.
fsurf(___,
uses
LineSpec
)LineSpec
to set the line style, marker symbol, and face
color. Use this option after any of the previous input argument
combinations.
fsurf(___,
specifies line
properties using one or more Name,Value
)Name,Value
pair arguments. Use
this option after any of the input argument combinations in the previous
syntaxes.
fsurf(
plots
into the axes with the object ax
,___)ax
instead of the
current axes object gca
.
returns
a function surface object or parameterized function surface object,
depending on the type of surface. Use the object to query and modify
properties of a specific surface. For details, see FunctionSurface Properties and ParameterizedFunctionSurface Properties.fs
= fsurf(___)
Examples
3-D Surface Plot of Symbolic Expression
3-D Surface Plot of Symbolic Function
Plot the real part of over the default range and .
syms f(x,y)
f(x,y) = real(atan(x + i*y));
fsurf(f)
Specify Plotting Interval of Surface Plot
Plot over and by specifying the plotting interval as the second argument of fsurf
.
syms x y f = sin(x) + cos(y); fsurf(f, [-pi pi -5 5])
Parameterized Surface Plot
Plot the parameterized surface
for and .
Improve the plot's appearance by using camlight
.
syms s t r = 2 + sin(7*s + 5*t); x = r*cos(s)*sin(t); y = r*sin(s)*sin(t); z = r*cos(t); fsurf(x, y, z, [0 2*pi 0 pi]) camlight view(46,52)
Surface Plot of Piecewise Expression
Plot the piecewise expression of the Klein bottle
for and .
Show that the Klein bottle has only a one-sided surface.
syms u v; r = @(u) 4 - 2*cos(u); x = piecewise(u <= pi, -4*cos(u)*(1+sin(u)) - r(u)*cos(u)*cos(v),... u > pi, -4*cos(u)*(1+sin(u)) + r(u)*cos(v)); y = r(u)*sin(v); z = piecewise(u <= pi, -14*sin(u) - r(u)*sin(u)*cos(v),... u > pi, -14*sin(u)); h = fsurf(x,y,z, [0 2*pi 0 2*pi]);
Add Title and Axis Labels and Format Ticks
For and from to , plot the 3-D surface . Add a title and axis labels.
Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2
. Convert the axis limits to precise multiples of pi/2
by using round
and get the symbolic tick values in S
. Display these ticks by using the XTick
property. Create x-axis labels by using arrayfun
to apply texlabel
to S
. Display these labels by using the XTickLabel
property. Repeat these steps for the y-axis.
To use LaTeX in plots, see latex
.
syms x y fsurf(y.*sin(x)-x.*cos(y), [-2*pi 2*pi]) title('ysin(x) - xcos(y) for x and y in [-2\pi,2\pi]') xlabel('x') ylabel('y') zlabel('z') ax = gca; S = sym(ax.XLim(1):pi/2:ax.XLim(2)); S = sym(round(vpa(S/pi*2))*pi/2); ax.XTick = double(S); ax.XTickLabel = arrayfun(@texlabel,S,'UniformOutput',false); S = sym(ax.YLim(1):pi/2:ax.YLim(2)); S = sym(round(vpa(S/pi*2))*pi/2); ax.YTick = double(S); ax.YTickLabel = arrayfun(@texlabel,S,'UniformOutput',false);
Line Style and Width for Surface Plot
Plot the parametric surface , , with different line styles for different values of . For , use a dashed line with green dot markers. For , use a LineWidth
of 1
and a green face color. For , turn off the lines by setting EdgeColor
to none
.
syms s t fsurf(s*sin(t),-s*cos(t),t,[-5 5 -5 -2],'--.','MarkerEdgeColor','g') hold on fsurf(s*sin(t),-s*cos(t),t,[-5 5 -2 2],'LineWidth',1,'FaceColor','g') fsurf(s*sin(t),-s*cos(t),t,[-5 5 2 5],'EdgeColor','none')
Modify Surface After Creation
Plot the parametric surface
Specify an output to make fcontour
return the plot object.
syms u v x = exp(-abs(u)/10).*sin(5*abs(v)); y = exp(-abs(u)/10).*cos(5*abs(v)); z = u; fs = fsurf(x,y,z)
fs = ParameterizedFunctionSurface with properties: XFunction: exp(-abs(u)/10)*sin(5*abs(v)) YFunction: exp(-abs(u)/10)*cos(5*abs(v)) ZFunction: u EdgeColor: [0 0 0] LineStyle: '-' FaceColor: 'interp' Use GET to show all properties
Change the range of u
to [-30 30]
by using the URange
property of fs
. Set the line color to blue by using the EdgeColor
property and specify white, dot markers by using the Marker
and MarkerEdgeColor
properties.
fs.URange = [-30 30]; fs.EdgeColor = 'b'; fs.Marker = '.'; fs.MarkerEdgeColor = 'w';
Multiple Surface Plots and Transparent Surfaces
Plot multiple surfaces using vector input to fsurf
. Alternatively, use hold on
to plot successively on the same figure. When displaying multiple surfaces on the same figure, transparency is useful. Adjust the transparency of surface plots by using the FaceAlpha
property. FaceAlpha
varies from 0
to 1
, where 0
is full transparency and 1
is no transparency.
Plot the planes and using vector input to fsurf
. Show both planes by making them half transparent using FaceAlpha
.
syms x y h = fsurf([x+y x-y]); h(1).FaceAlpha = 0.5; h(2).FaceAlpha = 0.5; title('Planes (x+y) and (x-y) at half transparency')
Control Resolution of Surface Plot
Control the resolution of a surface plot using the 'MeshDensity'
option. Increasing 'MeshDensity'
can make smoother, more accurate plots while decreasing it can increase plotting speed.
Divide a figure into two using subplot
. In the first subplot, plot the parametric surface , , and . The surface has a large gap. Fix this issue by increasing the 'MeshDensity'
to 40
in the second subplot. fsurf
fills the gap showing that by increasing 'MeshDensity'
you increased the plot's resolution.
syms s t subplot(2,1,1) fsurf(sin(s), cos(s), t/10.*sin(1./s)) view(-172,25) title('Default MeshDensity = 35') subplot(2,1,2) fsurf(sin(s), cos(s), t/10.*sin(1./s),'MeshDensity',40) view(-172,25) title('Increased MeshDensity = 40')
Show Contours Below Surface Plot
Show contours for the surface plot of the expression f
by setting the 'ShowContours'
option to 'on'
.
syms x y f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)... - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)... - 1/3*exp(-(x+1)^2 - y^2); fsurf(f,[-3 3],'ShowContours','on')
Create Animation of Surface Plots
Create an animation of surface plots by changing the displayed expression using the Function
, XFunction
, YFunction
, and ZFunction
properties, and then use drawnow
to update the plot. To export to GIF, see imwrite
.
By varying the variable from 1 to 3, animate the parametric surface
for and . Increase plotting speed by reducing MeshDensity
to 9.
syms s t h = fsurf(t.*sin(s), cos(s), sin(1./s), [-0.1 0.1 0 1]); h.MeshDensity = 9; for i=1:0.1:3 h.ZFunction = sin(i./s); drawnow end
Improve Appearance of Surface Plot
Create a symbolic expression f
for the function
Plot the expression f
as a surface. Improve the appearance of the surface plot by using the properties of the handle returned by fsurf
, the lighting properties, and the colormap
.
Create a light by using camlight
. Increase brightness by using brighten
. Remove the lines by setting EdgeColor
to 'none'
. Increase the ambient light using AmbientStrength
. For details, see Lighting, Transparency, and Shading. Turn the axes box on. For the title, convert f
to LaTeX using latex
. Finally, to improve the appearance of the axes ticks, axes labels, and title, set 'Interpreter'
to 'latex'
.
syms x y f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)... - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)... - 1/3*exp(-(x+1)^2 - y^2); h = fsurf(f,[-3 3]); camlight(110,70) brighten(0.6) h.EdgeColor = 'none'; h.AmbientStrength = 0.4; a = gca; a.TickLabelInterpreter = 'latex'; a.Box = 'on'; a.BoxStyle = 'full'; xlabel('$x$','Interpreter','latex') ylabel('$y$','Interpreter','latex') zlabel('$z$','Interpreter','latex') title_latex = ['$' latex(f) '$']; title(title_latex,'Interpreter','latex')
Surface Plot with Bounded Plane
Plot a cylindrical shell bounded below by the plane and above by the plane .
syms r t u fsurf(cos(t),sin(t),u*(cos(t)+2),[0 2*pi 0 1]) hold on;
Add a surface plot of the plane .
fsurf(r*cos(t),r*sin(t),r*cos(t)+2,[0 1 0 2*pi])
Apply Rotation and Translation to Surface Plot
Apply rotation and translation to the surface plot of a torus.
A torus can be defined parametrically by
where
is the polar angle and is the azimuthal angle
is the radius of the tube
is the distance from the center of the tube to the center of the torus
Define the values for and as 1 and 5, respectively. Plot the torus using fsurf
.
syms theta phi a = 1; R = 4; x = (R + a*cos(theta))*cos(phi); y = (R + a*cos(theta))*sin(phi); z = a*sin(theta); fsurf(x,y,z,[0 2*pi 0 2*pi]) hold on
Apply rotation to the torus around the -axis. Define the rotation matrix. Rotate the torus by 90 degrees or radians.
alpha = pi/2; Rx = [1 0 0; 0 cos(alpha) -sin(alpha); 0 sin(alpha) cos(alpha)]; r = [x; y; z]; r_90 = Rx*r;
Shift the center of the torus by 5 along the -axis. Add a second plot of the rotated and translated torus to the existing graph.
fsurf(r_90(1)+5,r_90(2),r_90(3))
axis([-5 10 -5 10 -5 5])
hold off
Input Arguments
f
— 3-D expression or function to be plotted
symbolic expression | symbolic function
Expression or function to be plotted, specified as a symbolic expression or function.
[min max]
— Plotting interval for x- and y-axes
[–5 5] (default) | vector of two numbers
Plotting interval for x- and y-axes, specified as a vector of
two numbers. The default is [-5 5]
.
[xmin xmax ymin ymax]
— Plotting interval for x- and y-axes
[–5 5 –5 5] (default) | vector of four numbers
Plotting interval for x- and y-axes, specified as a vector of
four numbers. The default is [-5 5 -5 5]
.
funx,funy,funz
— Parametric functions of u
and v
symbolic expressions | symbolic functions
Parametric functions of u
and v
,
specified as a symbolic expression or function.
[uvmin uvmax]
— Plotting interval for u
and v
[–5 5] (default) | vector of two numbers
Plotting interval for u
and v
axes,
specified as a vector of two numbers. The default is [-5
5]
.
[umin umax vmin vmax]
— Plotting interval for u
and v
[–5 5 –5 5] (default) | vector of four numbers
Plotting interval for u
and v
,
specified as a vector of four numbers. The default is [-5
5 -5 5]
.
ax
— Axes object
axes object
Axes object. If you do not specify an axes object, then fsurf
uses
the current axes.
LineSpec
— Line style, marker, and color
string scalar | character vector
Line style, marker, and color, specified as a string scalar or character vector containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: "--or"
is a red dashed line with circle markers.
Line Style | Description | Resulting Line |
---|---|---|
"-" | Solid line |
|
"--" | Dashed line |
|
":" | Dotted line |
|
"-." | Dash-dotted line |
|
Marker | Description | Resulting Marker |
---|---|---|
"o" | Circle |
|
"+" | Plus sign |
|
"*" | Asterisk |
|
"." | Point |
|
"x" | Cross |
|
"_" | Horizontal line |
|
"|" | Vertical line |
|
"square" | Square |
|
"diamond" | Diamond |
|
"^" | Upward-pointing triangle |
|
"v" | Downward-pointing triangle |
|
">" | Right-pointing triangle |
|
"<" | Left-pointing triangle |
|
"pentagram" | Pentagram |
|
"hexagram" | Hexagram |
|
Color Name | Short Name | RGB Triplet | Appearance |
---|---|---|---|
"red" | "r" | [1 0 0] |
|
"green" | "g" | [0 1 0] |
|
"blue" | "b" | [0 0 1] |
|
"cyan"
| "c" | [0 1 1] |
|
"magenta" | "m" | [1 0 1] |
|
"yellow" | "y" | [1 1 0] |
|
"black" | "k" | [0 0 0] |
|
"white" | "w" | [1 1 1] |
|
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'Marker','o','MarkerFaceColor','red'
The properties listed here are only a subset. For a complete list, see FunctionSurface Properties.
MeshDensity
— Number of evaluation points per direction
35 (default) | number
Number of evaluation points per direction, specified as a number.
The default is 35
. Because fsurf
objects
use adaptive evaluation, the actual number of evaluation points is
greater.
Example: 100
ShowContours
— Display contour plot under plot
'off'
(default) | on/off logical value
Display contour plot under plot, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
EdgeColor
— Line color
[0 0 0]
(default) | 'interp'
| RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Line color, specified as 'interp'
, an RGB triplet, a hexadecimal color
code, a color name, or a short name. The default RGB triplet value of [0 0
0]
corresponds to black. The 'interp'
value colors the
edges based on the ZData
values.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
LineStyle
— Line style
"-"
(default) | "--"
| ":"
| "-."
| "none"
Line style, specified as one of the options listed in this table.
Line Style | Description | Resulting Line |
---|---|---|
"-" | Solid line |
|
"--" | Dashed line |
|
":" | Dotted line |
|
"-." | Dash-dotted line |
|
"none" | No line | No line |
LineWidth
— Line width
0.5
(default) | positive value
Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the line has markers, then the line width also affects the marker edges.
The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is less than the width of a pixel on your system, the line displays as one pixel wide.
Marker
— Marker symbol
"none"
(default) | "o"
| "+"
| "*"
| "."
| ...
Marker symbol, specified as one of the values listed in this table. By default, the object does not display markers. Specifying a marker symbol adds markers at each data point or vertex.
Marker | Description | Resulting Marker |
---|---|---|
"o" | Circle |
|
"+" | Plus sign |
|
"*" | Asterisk |
|
"." | Point |
|
"x" | Cross |
|
"_" | Horizontal line |
|
"|" | Vertical line |
|
"square" | Square |
|
"diamond" | Diamond |
|
"^" | Upward-pointing triangle |
|
"v" | Downward-pointing triangle |
|
">" | Right-pointing triangle |
|
"<" | Left-pointing triangle |
|
"pentagram" | Pentagram |
|
"hexagram" | Hexagram |
|
"none" | No markers | Not applicable |
MarkerEdgeColor
— Marker outline color
'auto'
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Marker outline color, specified as 'auto'
, an RGB triplet, a
hexadecimal color code, a color name, or a short name. The default value of
'auto'
uses the same color as the EdgeColor
property.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'
MarkerFaceColor
— Marker fill color
"none"
(default) | "auto"
| RGB triplet | hexadecimal color code | "r"
| "g"
| "b"
| ...
Marker fill color, specified as "auto"
, an RGB triplet, a hexadecimal color
code, a color name, or a short name. The "auto"
value uses the same
color as the MarkerEdgeColor
property.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
Example: [0.3 0.2 0.1]
Example: "green"
Example: "#D2F9A7"
MarkerSize
— Marker size
6
(default) | positive value
Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.
Output Arguments
fs
— One or more objects
scalar | vector
One or more objects, returned as a scalar or a vector. The object is either a function surface object or parameterized surface object, depending on the type of plot. You can use these objects to query and modify properties of a specific line. For details, see FunctionSurface Properties and ParameterizedFunctionSurface Properties.
Algorithms
fsurf
assigns the symbolic variables
in f
to the x-axis, then the y-axis,
and symvar
determines the order of the variables to be assigned. Therefore, variable
and axis names might not correspond. To force fsurf
to assign
x or y to its corresponding axis, create the symbolic
function to plot, then pass the symbolic function to fsurf
.
For example, the following code plots f(x,y) = sin(y) in two ways. The first way forces the waves to oscillate with respect to the y-axis. In other words, the first plot assigns the y variable to the corresponding y-axis. The second plot assigns y to the x-axis because it is the first (and only) variable in the symbolic function.
syms x y; f(x,y) = sin(y); figure; subplot(2,1,1) fsurf(f); subplot(2,1,2) fsurf(f(x,y)); % Or fsurf(sin(y));
Version History
Introduced in R2016a
See Also
Functions
Properties
MATLAB-Befehl
Sie haben auf einen Link geklickt, der diesem MATLAB-Befehl entspricht:
Führen Sie den Befehl durch Eingabe in das MATLAB-Befehlsfenster aus. Webbrowser unterstützen keine MATLAB-Befehle.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)