isanomaly
Find anomalies in data using robust random cut forest (RRCF) for incremental learning
Since R2023b
Syntax
Description
finds anomalies in the table tf = isanomaly(forest,Tbl)Tbl using the incrementalRobustRandomCutForest object forest and
returns the logical array tf, whose elements are
true when an anomaly is detected in the corresponding row of
Tbl. You must use this syntax if you train
forest by passing a table to fit, or if
you create forest using the incrementalLearner function with a RobustRandomCutForest object trained on data in a table.
finds anomalies in the matrix tf = isanomaly(forest,X)X. You must use this syntax if you
train forest by passing a matrix to fit, or if
you create forest using the incrementalLearner function with a RobustRandomCutForest object trained on data in a matrix.
specifies the threshold for the anomaly score using any of the input argument
combinations in the previous syntaxes. tf = isanomaly(___,ScoreThreshold=scoreThreshold)isanomaly identifies
observations with scores above scoreThreshold as anomalies.
Examples
Input Arguments
Output Arguments
References
[1] Guha, Sudipto, N. Mishra, G. Roy, and O. Schrijvers. "Robust Random Cut Forest Based Anomaly Detection on Streams," Proceedings of The 33rd International Conference on Machine Learning 48 (June 2016): 2712–21.
Version History
Introduced in R2023b




