Use Enumerated Data in Generated Code
Enumerated Data Types
Enumerated data is data that is restricted to a finite set of
values. An enumerated data type is a MATLAB® class that defines a set of enumerated values. Each
enumerated value consists of an enumerated name and an
underlying integer which the software uses internally and in
generated code. The following is a MATLAB class definition for an enumerated data type named
BasicColors
, which is used in the examples in this section.
classdef BasicColors < Simulink.IntEnumType enumeration Red(0) Yellow(1) Blue(2) end end
For basic information about enumerated data types and their use in Simulink® models, see Use Enumerated Data in Simulink Models. For information about enumerated data types in Stateflow® charts, see Define Enumerated Data Types (Stateflow).
Specify Integer Data Type for Enumeration
When you specify a data type for your enumeration, you can:
Control the size of enumerated data types in the generated code by specifying a superclass.
Reduce RAM/ROM usage.
Improve code portability.
Improve integration with legacy code.
You can specify these integer data types:
int8
uint8
int16
uint16
int32
Simulink.IntEnumType
. Specify values in the range of the signed integer for your hardware platform.
Use a Class Definition in a MATLAB File
To specify an integer data type size, derive your enumeration class from the integer data type.
classdef Colors < int8 enumeration Red(0) Green(1) Blue(2) end end
The code generator generates this code:
typedef int8_T Colors; #define Red ((Colors)0) #define Green ((Colors)1) #define Blue ((Colors)2)
Use the Function Simulink.defineIntEnumType
To specify an integer data type size, specify the name-value pair
StorageType
as the integer data type.
Simulink.defineIntEnumType('Colors',{'Red','Green','Blue'},... [0;1;2],'StorageType','int8')
The code generator generates this code:
typedef int8_T Colors; #define Red ((Colors)0) #define Green ((Colors)1) #define Blue ((Colors)2)
Customize Enumerated Data Type
When you generate code from a model that uses enumerated data, you can implement these static methods to customize the behavior of the type during simulation and in generated code:
getDefaultValue
— Specifies the default value of the enumerated data type.getDescription
— Specifies a description of the enumerated data type.getHeaderFile
— Specifies a header file where the type is defined for generated code.getDataScope
— Specifies whether generated code exports or imports the enumerated data type definition to or from a separate header file.addClassNameToEnumNames
— Specifies whether the class name becomes a prefix in generated code.
The first of these methods, getDefaultValue
, is relevant to both
simulation and code generation, and is described in Specify a Default Enumerated Value. The other methods are relevant only to
code generation. To customize the behavior of an enumerated type, include a version of the
method in the methods(Static)
section of the enumeration class
definition. If you do not want to customize the type, omit the
methods(Static)
section. The table summarizes the methods and the data
to supply for each one.
Static Method | Purpose | Default Value Without Implementing Method | Custom Return Value |
---|---|---|---|
getDefaultValue | Specifies the default enumeration member for the class. | First member specified in the enumeration definition | A character vector containing the name of an enumeration member in the class (see Instantiate Enumerations). |
getDescription | Specifies a description of the enumeration class. | '' | A character vector containing the description of the type. |
getHeaderFile | Specifies the name of a header file. The method getDataScope
determines the significance of the file. | '' | A character vector containing the name of the header file that defines the enumerated type. By default, the generated
|
getDataScope | Specifies whether generated code exports or imports the definition of the
enumerated data type. Use the method getHeaderFile to specify the
generated or included header file that defines the type. | 'Auto' | One of: 'Auto' , 'Exported' , or
'Imported' . |
addClassNameToEnumNames | Specifies whether to prefix the class name in generated code. | false | true or false . |
Specify a Description
If you have an Embedded Coder® license, you can enable the Simulink data object descriptions (Embedded Coder) model configuration parameter to
include descriptions for enumerated data types in the generated code. To specify a
description for an enumerated data type, include this method in the
methods(Static)
section of the enumeration class:
function retVal = getDescription()
% GETDESCRIPTION Optional description of the data type.
retVal = 'description';
end
Substitute a MATLAB character vector for description
. The generated
code that defines the enumerated type includes the specified description.
Import Type Definition in Generated Code
To prevent generated code from defining an enumerated data type, which allows you to
provide the definition in an external file, include these methods in the
methods(Static)
section of the enumeration class:
function retVal = getHeaderFile() % GETHEADERFILE Specifies the file that defines this type in generated code. % The method getDataScope determines the significance of the specified file. retVal = 'imported_enum_type.h'; end function retVal = getDataScope() % GETDATASCOPE Specifies whether generated code imports or exports this type. % Return one of: % 'Auto': define type in model_types.h, or import if header file specified % 'Exported': define type in a generated header file % 'Imported': import type definition from specified header file % If you do not define this method, DataScope is 'Auto' by default. retVal = 'Imported'; end
Instead of defining the type in
, which is the default
behavior, generated code imports the definition from the specified header file using a
model
_types.h#include
statement like:
#include "imported_enum_type.h"
Generating code does not create the imported header file. You must provide the header
file, using the file name specified by the method getHeaderFile
, that
defines the enumerated data type.
To create a Simulink enumeration that corresponds to your existing C-code enumeration, use the
Simulink.importExternalCTypes
function.
Export Type Definition in Generated Code
To generate a separate header file that defines an enumerated data type, include these
methods in the methods(Static)
section of the enumeration class:
function retVal = getDataScope() % GETDATASCOPE Specifies whether generated code imports or exports this type. % Return one of: % 'Auto': define type in model_types.h, or import if header file specified % 'Exported': define type in a generated header file % 'Imported': import type definition from specified header file % If you do not define this method, DataScope is 'Auto' by default. retVal = 'Exported'; end function retVal = getHeaderFile() % GETHEADERFILE Specifies the file that defines this type in generated code. % The method getDataScope determines the significance of the specified file. retVal = 'exported_enum_type.h'; end
Generated code exports the enumerated type definition to the generated header file
exported_enum_type.h
.
Add Prefixes To Class Names
By default, enumerated values in generated code have the same names that they have in
the enumeration class definition. Alternatively, your code can prefix every enumerated
value in an enumeration class with the name of the class. You can use this technique to
prevent identifier conflicts or to improve the readability of the code. To specify class
name prefixing, include this method in the methods(Static)
section of
an enumeration class:
function retVal = addClassNameToEnumNames() % ADDCLASSNAMETOENUMNAMES Specifies whether to add the class name % as a prefix to enumeration member names in generated code. % Return true or false. % If you do not define this method, no prefix is added. retVal = true; end
Specify the return value as true
to enable class name prefixing or
as false
to suppress prefixing. If you specify true
,
each enumerated value in the class appears in generated code as
EnumTypeName_EnumName
. For the example enumeration class
BasicColors
in Enumerated Data Types, the data type definition in
generated code might look like this:
#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_ #define _DEFINED_TYPEDEF_FOR_BasicColors_ typedef enum { BasicColors_Red = 0, /* Default value */ BasicColors_Yellow = 1, BasicColors_Blue = 2, } BasicColors; #endif
The enumeration class name BasicColors
appears as a prefix for each
of the enumerated names.
Control Use of Duplicate Enumeration Member Names
When you import the enumeration data from a header file, you can control the use of
duplicate enumeration member names during code generation. Duplicate enumeration member
names improve the readability of the code. Use the model configuration parameter Duplicate
enumeration member names to allow duplicate enumeration member names
in different enumeration types during code generation or to generate an error or a warning
message. You can use duplicate enumeration member names only if two enumerations have the
same StorageType
and have these specifications:
DataScope
set to'Imported'
StorageType
set to'int8'
,'int16'
,'int32'
,'uint8'
,'uint16'
, or'uint32'
Value
is the same
For example:
typedef int32_T enum { Red = 0, Yellow = 1, Blue = 2, }A; typedef int32_T enum { Black = 0, Yellow = 1, White = 2, }B;
Yellow
enumeration member in
enumeration A
and B
without prefixing the member
name with a class name to improve the readability of your code.Control Enumerated Type Implementation in Generated Code
Suppose that you define an enumerated type BasicColors
. You can
specify that the generated code implement the type definition by using:
An
enum
block. The native integer type of your hardware is the underlying integer type for the enumeration members.A
typedef
statement and a series of#define
macros. Thetypedef
statement bases the enumerated type name on a specific integer data type, such asint8
. The macros associate the enumeration members with the underlying integer values.
Implement Enumerated Type by Using enum
Block
To implement the type definition by using an enum
block:
In Simulink, define the enumerated type by using a
classdef
block in a script file. Derive the enumeration from the typeSimulink.IntEnumType
.Alternatively, use the function
Simulink.defineIntEnumType
. Do not specify the propertyStorageType
.
When you generate code, the type definition appears in an enum
block.
#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_ #define _DEFINED_TYPEDEF_FOR_BasicColors_ typedef enum { Red = 0, /* Default value */ Yellow, Blue, } BasicColors; #endif
Implement Enumerated Type Using a Specific Integer Type
To implement the type definition using a typedef
statement and
#define
macros:
In Simulink, define the enumerated type using a
classdef
block in a script file. Derive the enumeration from a specific integer type such asint8
.Alternatively, use the function
Simulink.defineIntEnumType
. Specify the propertyStorageType
using a specific integer type such asint8
.
When you generate code, the type definition appears as a typedef
statement and a series of #define
macros.
#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_ #define _DEFINED_TYPEDEF_FOR_BasicColors_ typedef int8_T BasicColors; #define Red ((BasicColors)0) /* Default value */ #define Yellow ((BasicColors)1) #define Blue ((BasicColors)2) #endif
By default, the generated file
contains enumerated type
definitions.model
_types.h
Type Casting for Enumerations
Safe Casting
A Simulink Data Type Conversion block accepts a signal of integer type. The block converts the input to one of the underlying values of an enumerated type.
If the input value does not match an underlying value of an enumerated type value, Simulink inserts a safe cast to replace the input value with the enumerated type default value.
Enable and Disable Safe Casting
You can enable or disable safe casting for enumerations during code generation for a Simulink Data Type Conversion block or a Stateflow block.
To control safe casting, enable or disable the Saturate on integer overflow block parameter. The parameter works as follows:
Enabled: Simulink replaces a nonmatching input value with the default value of the enumerated values during simulation. The software generates a safe cast function during code generation.
Disabled: For a nonmatching input value, Simulink generates an error during simulation. The software omits the safe cast function during code generation. In this case, the code is more efficient. However, the code may be more vulnerable to run-time errors.
Safe Cast Function in Generated Code
This example shows how the safe cast function
int32_T ET08_safe_cast_to_BasicColors
for the enumeration
BasicColors
appears in generated code when generated for 32-bit
hardware.
static int32_T ET08_safe_cast_to_BasicColors(int32_T input) { int32_T output; /* Initialize output value to default value for BasicColors (Red) */ output = 0; if ((input >= 0) && (input <= 2)) { /* Set output value to input value if it is a member of BasicColors */ output = input; } return output; }
If the block’s Saturate on integer overflow parameter is disabled, this function does not appear in generated code.
Enumerated Type Limitations
Generated code does not support logging enumerated data.
For
uint32
-based enumerations, enumeration values must be less than or equal tointmax('int32')
.
See Also
enumeration
| Simulink.defineIntEnumType
| Simulink.data.getEnumTypeInfo