PDESolverOptions Properties
Algorithm options for solvers
A PDESolverOptions object contains options used by the
solvers when solving a structural, thermal, electromagnetic, or general PDE problem
specified as an femodel,
StructuralModel, ThermalModel, ElectromagneticModel, or PDEModel object, respectively. femodel,
StructuralModel, ThermalModel,
ElectromagneticModel, and PDEModel objects
contain a PDESolverOptions object in their
SolverOptions property.
Solvers for structural modal analysis problems and reduced-order modeling use the Lanczos algorithm.
Statistics and Convergence Report
Flag to display the internal solver statistics and the convergence report
during the solution process for transient and eigenvalue problems, specified
as "on" or "off". For linear
stationary problems, there is no statistics and convergence report to
display.
Example: model.SolverOptions.ReportStatistics =
"on"
Data Types: char
ODE Solver
Absolute tolerance for the internal ODE solver, specified as a positive number. Absolute tolerance is a threshold below which the value of the solution component is unimportant. This property determines the accuracy when the solution approaches zero.
Example: model.SolverOptions.AbsoluteTolerance =
5.0000e-06
Data Types: double
Relative tolerance for the internal ODE solver, specified as a positive
number. This tolerance is a measure of the error relative to the size of
each solution component. Roughly, it controls the number of correct digits
in all solution components, except those smaller than thresholds imposed by
AbsoluteTolerance. The default value corresponds to
0.1% accuracy.
Example: model.SolverOptions.RelativeTolerance =
5.0000e-03
Data Types: double
Nonlinear Solver
Acceptable residual tolerance for the internal nonlinear solver, specified
as a positive number. The nonlinear solver iterates until the residual size
is less than the value of ResidualTolerance.
Example: model.SolverOptions.ResidualTolerance =
5.0000e-04
Data Types: double
Maximal number of Gauss-Newton iterations for the internal nonlinear solver, specified as a positive integer.
Example: model.SolverOptions.MaxIterations =
30
Data Types: double
Minimum damping of the search direction for the internal nonlinear solver, specified as a positive number. For details, see Nonlinear Solver Algorithm.
Example: model.SolverOptions.MinStep =
1.5259e-7
Data Types: double
Type of norm for computing the residual for the internal nonlinear solver,
specified as Inf, -Inf, a positive
number, or "energy". The default value for
ElectromagneticModel is 2, and for all other models
it is Inf.
The infinity norms of a vector are
The Lp-norm of a vector ρ
that has N elements is
The energy norm of a vector ρ is
Here, K is the combined stiffness matrix defined in Nonlinear Solver Algorithm.
Example: model.SolverOptions.ResidualNorm =
"energy"
Data Types: double | char
Lanczos Solver
Maximum number of Lanczos shifts, specified as a positive integer. Increase this value when computing a large number of eigenpairs.
Example: model.SolverOptions.MaxShift =
500
Data Types: double
Block size for block Lanczos recurrence, specified as a positive integer.
The default number ranges from 7 to 25, depending on the size of the
stiffness matrix K.
Example: model.SolverOptions.BlockSize =
20
Data Types: double
Algorithms
The residual equation of a nonlinear PDE is as follows:
To obtain a discretized residual equation, apply the finite element method (FEM) to a partial differential equation as described in Finite Element Method Basics:
The nonlinear solver uses a Gauss-Newton iteration scheme applied to the finite element matrices. Use a Taylor series expansion to obtain the linearized system for the residual:
Neglecting the higher-order terms, write the linearized system of equations as
The descent direction for the residual is
The Gauss-Newton iteration minimizes the residual, that is, the solution of , using the equation
Here, ɑ ≤ 1 is a positive number, that must be set as large as possible so that the step has a reasonable descent. For a sufficiently small ɑ,
For the Gauss-Newton algorithm to converge, must be close enough to the solution. The first guess is often outside the region of convergence. The Armijo-Goldstein line search (a damping strategy for choosing ɑ) helps to improve convergence from bad initial guesses. This method chooses the largest damping coefficient ɑ out of the sequence 1, 1/2, 1/4, . . . such that the following inequality holds:
Using the Armijo-Goldstein line search guarantees a reduction of the residual norm by at least . Each step of the line-search algorithm must evaluate the residual .
With this strategy, when Un approaches the solution, →1, thus, the convergence rate increases.
Version History
Introduced in R2016a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)