Main Content


Apply internal average relative reflectance (IARR) correction to hyperspectral data cube

Since R2020b



    correctedData = iarr(inputData) applies IARR based correction to the hyperspectral data inputData. The IARR method computes the mean spectrum from the entire hyperspectral dataset, then divides the spectrum of each pixel by the mean spectrum.


    This function requires the Image Processing Toolbox™ Hyperspectral Imaging Library. You can install the Image Processing Toolbox Hyperspectral Imaging Library from Add-On Explorer. For more information about installing add-ons, see Get and Manage Add-Ons.

    The Image Processing Toolbox Hyperspectral Imaging Library requires desktop MATLAB®, as MATLAB Online™ or MATLAB Mobile™ do not support the library.


    collapse all

    Read hyperspectral data into the workspace. This data is from the EO-1 Hyperion sensor, with pixel values in digital numbers.

    hcube = hypercube("EO1H0440342002212110PY_cropped.hdr");

    Convert the digital numbers to top of atmosphere (TOA) reflectance values.

    hcube_toa = dn2reflectance(hcube);

    Apply atmospheric correction to the reflectance data.

    newhcube = sharc(hcube_toa); 

    Apply IARR correction to the atmospherically corrected hyperspectral data.

    newhcube_iarr = iarr(newhcube);

    Display the false-color images of the atmospherically corrected hyperspectral data before and after IARR correction.

    sharcImg = colorize(newhcube);
    sharcImg_iarr = colorize(newhcube_iarr);
    imagesc([sharcImg sharcImg_iarr])

    Input Arguments

    collapse all

    Input hyperspectral data, specified as one of these options:

    • hypercube object — The DataCube property of the hypercube object stores the hyperspectral data cube.

    • M-by-N-by-C numeric array — M and N are the number of rows and columns of pixels in the hyperspectral data, respectively. C is the number of spectral bands in the hyperspectral data.

    The input pixel values can be digital numbers, TOA radiance values, or TOA reflectance values. To convert a hypercube containing digital numbers to a hypercube containing TOA radiance or TOA reflectance data, use the dn2radiance or dn2reflectance function, respectively.

    Output Arguments

    collapse all

    Corrected hyperspectral data, returned as a hypercube object or M-by-N-by-C numeric array consistent with the input data, inputData. If the input data in inputData is of data type double, then the corrected data is also of data type double. Otherwise, the corrected data is of data type single.


    [1] Kruse, Fred A. “Use of Airborne Imaging Spectrometer Data to Map Minerals Associated with Hydrothermally Altered Rocks in the Northern Grapevine Mountains, Nevada, and California.” Remote Sensing of Environment 24, no. 1 (February 1988): 31–51.

    Version History

    Introduced in R2020b