createMLPNetwork
Create and initialize a Multi-Layer Perceptron (MLP) network to be used within a neural state-space system
Since R2022b
Description
dlnet = createMLPNetwork(nss,type)dlnet of type
          type to approximate either the state, (the non-trivial part of) the
        output, the encoder, or the decoder function of the neural state space object
          nss. For example, to specify the network for the state function, use
        
nss.StateNetwork = createMLPNetwork(nss,"state",...)
nss.OutputNetwork(2) = createMLPNetwork(nss,"output",...)
nss.Encoder = createMLPNetwork(nss,"encoder",...)
nss.Decoder = createMLPNetwork(nss,"decoder",...)
dlnet = createMLPNetwork(___,Name=Value)
For example, dlnet = createMLPNetwork(nss,"output",LayerSizes=[4
          3],Activations="sigmoid") creates an output network with two hidden layers
        having four and three sigmoid-activated neurons, respectively.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
Version History
Introduced in R2022b
See Also
Objects
- idNeuralStateSpace|- nssTrainingADAM|- nssTrainingSGDM|- nssTrainingRMSProp|- nssTrainingLBFGS|- idss|- idnlgrey
Functions
- setNetwork|- nssTrainingOptions|- nlssest|- generateMATLABFunction|- idNeuralStateSpace/evaluate|- idNeuralStateSpace/linearize|- sim