swaptionbybdt
Price swaption from Black-Derman-Toy interest-rate tree
Syntax
Description
[
        prices swaption using a Black-Derman-Toy tree.Price,PriceTree]
= swaptionbybdt(BDTTree,OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity)
Note
Alternatively, you can use the Swaption object to price
            swaption instruments. For more information, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
[
          adds optional name-value pair arguments.Price,PriceTree]
= swaptionbybdt(___,Name,Value)
Examples
This example shows how to price a 5-year call swaption using a BDT interest-rate tree. Assume that interest rate and volatility are fixed at 6% and 20% annually between the valuation date of the tree until its maturity. Build a tree with the following data.
Rates = 0.06 * ones (10,1); StartDates = [datetime(2007,1,1) ; datetime(2008,1,1) ; datetime(2009,1,1) ; datetime(2010,1,1) ; datetime(2011,1,1) ; datetime(2012,1,1) ; datetime(2013,1,1) ; datetime(2014,1,1) ; datetime(2015,1,1) ; datetime(2016,1,1)]; EndDates = [datetime(2008,1,1) ; datetime(2009,1,1) ; datetime(2010,1,1) ; datetime(2011,1,1) ; datetime(2012,1,1) ; datetime(2013,1,1) ; datetime(2014,1,1) ; datetime(2015,1,1) ; datetime(2016,1,1) ; datetime(2017,1,1)]; ValuationDate = datetime(2007,1,1); Compounding = 1; % define the RateSpec RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ... 'Compounding', Compounding); % use VolSpec to compute interest-rate volatility Volatility = 0.20 * ones (10,1); VolSpec = bdtvolspec(ValuationDate,... EndDates, Volatility); % use TimeSpec to specify the structure of the time layout for a BDT tree TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); % build the BDT tree BDTTree = bdttree(VolSpec, RateSpec, TimeSpec); % use the following swaption arguments ExerciseDates = datetime(2012,1,1); SwapSettlement = ExerciseDates; SwapMaturity = datetime(2015,1,1); Spread = 0; SwapReset = 1; Principal = 100; OptSpec = 'call'; Strike =.062; Basis = 1; % price the swaption [Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ... 'Basis', Basis, 'Principal', Principal)
Price = 2.0592
PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4 5 6 7 8 9 10]
     PTree: {[2.0592]  [0.9218 3.4436]  [0.2189 1.7137 5.6694]  [0 0.4549 3.1715 9.1499]  [0 0 0.9524 5.8347 14.3819]  [0 0 0 2.0127 10.6474 21.7783]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0 0 0]}
This example shows how to price a 5-year call swaption with receiving and paying legs using a BDT interest-rate tree. Assume that interest rate and volatility are fixed at 6% and 20% annually between the valuation date of the tree until its maturity. Build a tree with the following data.
Rates = 0.06 * ones (10,1); StartDates = [datetime(2007,1,1) ; datetime(2008,1,1) ; datetime(2009,1,1) ; datetime(2010,1,1) ; datetime(2011,1,1) ; datetime(2012,1,1) ; datetime(2013,1,1) ; datetime(2014,1,1) ; datetime(2015,1,1) ; datetime(2016,1,1)]; EndDates = [datetime(2008,1,1) ; datetime(2009,1,1) ; datetime(2010,1,1) ; datetime(2011,1,1) ; datetime(2012,1,1) ; datetime(2013,1,1) ; datetime(2014,1,1) ; datetime(2015,1,1) ; datetime(2016,1,1) ; datetime(2017,1,1)]; ValuationDate = datetime(2007,1,1); Compounding = 1;
Define the RateSpec.
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ... 'Compounding', Compounding)
RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [10×1 double]
            Rates: [10×1 double]
         EndTimes: [10×1 double]
       StartTimes: [10×1 double]
         EndDates: [10×1 double]
       StartDates: [10×1 double]
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1
Use VolSpec to compute interest-rate volatility.
Volatility = 0.20 * ones (10,1); VolSpec = bdtvolspec(ValuationDate,EndDates, Volatility);
Use TimeSpec to specify the structure of the time layout for a BDT tree.
TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
Build the BDT tree.
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)
BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1×1 struct]
    TimeSpec: [1×1 struct]
    RateSpec: [1×1 struct]
        tObs: [0 1 2 3 4 5 6 7 8 9]
        dObs: [733043 733408 733774 734139 734504 734869 735235 735600 735965 736330]
        TFwd: {[10×1 double]  [9×1 double]  [8×1 double]  [7×1 double]  [6×1 double]  [5×1 double]  [4×1 double]  [3×1 double]  [2×1 double]  [9]}
      CFlowT: {[10×1 double]  [9×1 double]  [8×1 double]  [7×1 double]  [6×1 double]  [5×1 double]  [4×1 double]  [3×1 double]  [2×1 double]  [10]}
     FwdTree: {1×10 cell}
Define the swaption arguments.
ExerciseDates = datetime(2012,1,1); SwapSettlement = ExerciseDates; SwapMaturity = datetime(2015,1,1); Spread = 0; SwapReset = [1 1]; % 1st column represents receiving leg, 2nd column represents paying leg Principal = 100; OptSpec = 'call'; Strike=.062; Basis= [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg
Price the swaption.
[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ... 'Basis', Basis, 'Principal', Principal)
Price = 2.0592
PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4 5 6 7 8 9 10]
     PTree: {[2.0592]  [0.9218 3.4436]  [0.2189 1.7137 5.6694]  [0 0.4549 3.1715 9.1499]  [0 0 0.9524 5.8347 14.3819]  [0 0 0 2.0127 10.6474 21.7783]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0 0 0]  [0 0 0 0 0 0 0 0 0 0]}
Input Arguments
Interest-rate tree structure, specified by using bdttree.
Data Types: struct
Definition of the option as 'call' or 'put',
specified as a NINST-by-1 cell
array of character vectors. For more information, see More About.
Data Types: char | cell
Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double
Exercise dates for the swaption, specified as a
              NINST-by-1 vector or a
              NINST-by-2 vector using a datetime array, string
            array, or date character vectors, depending on the option type.
- For a European option, - ExerciseDatesare a- NINST-by-- 1vector of exercise dates. Each row is the schedule for one option. When using a European option, there is only one- ExerciseDateon the option expiry date.
- For an American option, - ExerciseDatesare a- NINST-by-- 2vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-- NaNdate is listed, or if- ExerciseDatesis- NINST-by-- 1, the option can be exercised between the- ValuationDateof the tree and the single listed- ExerciseDate.
To support existing code, swaptionbybdt also
    accepts serial date numbers as inputs, but they are not recommended.
Number of basis points over the reference rate, specified as
a NINST-by-1 vector.
Data Types: double
Settlement date (representing the settle date for each swap), specified as a
              NINST-by-1 vector using a datetime array, string
            array, or date character vectors. The Settle date for every swaption
            is set to the ValuationDate of the BDT tree. The swap argument
              Settle is ignored. The underlying swap starts at the maturity of
            the swaption.
To support existing code, swaptionbybdt also
    accepts serial date numbers as inputs, but they are not recommended.
Maturity date for each swap, specified as a NINST-by-1
            vector using a datetime array, string array, or date character vectors.
To support existing code, swaptionbybdt also
    accepts serial date numbers as inputs, but they are not recommended.
Name-Value Arguments
Specify optional pairs of arguments as
      Name1=Value1,...,NameN=ValueN, where Name is
      the argument name and Value is the corresponding value.
      Name-value arguments must appear after other arguments, but the order of the
      pairs does not matter.
    
      Before R2021a, use commas to separate each name and value, and enclose 
      Name in quotes.
    
Example: [Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',10000)
(Optional) Option type, specified as the comma-separated pair consisting of
                'AmericanOpt' and
                NINST-by-1 positive integer flags with values: 
- 0— European
- 1— American
Data Types: double
Reset frequency per year for the underlying swap, specified as the comma-separated pair
              consisting of 'SwapReset' and a
                NINST-by-1 vector or
                NINST-by-2 matrix representing the reset
              frequency per year for each leg. If SwapReset is
                NINST-by-2, the first column represents the
              receiving leg, while the second column represents the paying leg. 
Data Types: double
Day-count basis representing the basis used when annualizing the input forward rate tree for
              each instrument, specified as the comma-separated pair consisting of
                'Basis' and a NINST-by-1
              vector or NINST-by-2 matrix representing the
              basis for each leg. If Basis is
                NINST-by-2, the first column represents the
              receiving leg, while the second column represents the paying leg. 
- 0 = actual/actual 
- 1 = 30/360 (SIA) 
- 2 = actual/360 
- 3 = actual/365 
- 4 = 30/360 (PSA) 
- 5 = 30/360 (ISDA) 
- 6 = 30/360 (European) 
- 7 = actual/365 (Japanese) 
- 8 = actual/actual (ICMA) 
- 9 = actual/360 (ICMA) 
- 10 = actual/365 (ICMA) 
- 11 = 30/360E (ICMA) 
- 12 = actual/365 (ISDA) 
- 13 = BUS/252 
For more information, see Basis.
Data Types: double
Notional principal amount, specified as the comma-separated pair consisting of
                'Principal' and a
                NINST-by-1 vector. 
Data Types: double
Derivatives pricing options structure, specified as the comma-separated pair consisting of
                'Options' and a structure obtained from using derivset. 
Data Types: struct
Output Arguments
Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.
Tree structure of instrument prices, returned as a MATLAB® structure
of trees containing vectors of swaption instrument prices and a vector
of observation times for each node. Within PriceTree:
- PriceTree.PTreecontains the clean prices.
- PriceTree.tObscontains the observation times.
More About
A swaption (swap option) is a financial derivative that gives the holder the right, but not the obligation, to enter into an interest-rate swap agreement at a specified future date and under predetermined terms.
Swaptions are used by investors and institutions to hedge against interest rate fluctuations or to speculate on future changes in interest rates.
A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.
Version History
Introduced before R2006aAlthough swaptionbybdt supports serial date numbers,
                        datetime values are recommended instead. The
                        datetime data type provides flexible date and time
                formats, storage out to nanosecond precision, and properties to account for time
                zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
        2021
There are no plans to remove support for serial date number inputs.
See Also
bdttree | instswaption | swapbybdt | Swaption
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)