Compute Maximum Reward-to-Risk Ratio for CVaR Portfolio
Create a PortfolioCVaR object and incorporate a list of assets from CAPMUniverse.mat. Use simulateNormalScenariosByData to simulate the scenarios for each of the assets. These portfolio constraints require fully invested long-only portfolios (nonnegative weights that must sum to 1).
rng(1) % Set the seed for reproducibility. load CAPMuniverse p = PortfolioCVaR('AssetList',Assets(1:12)); p = simulateNormalScenariosByData(p, Data(:,1:12), 20000 ,'missingdata',true); p = setProbabilityLevel(p, 0.95); p = setDefaultConstraints(p); disp(p)
PortfolioCVaR with properties:
BuyCost: []
SellCost: []
RiskFreeRate: []
ProbabilityLevel: 0.9500
Turnover: []
BuyTurnover: []
SellTurnover: []
NumScenarios: 20000
Name: []
NumAssets: 12
AssetList: {'AAPL' 'AMZN' 'CSCO' 'DELL' 'EBAY' 'GOOG' 'HPQ' 'IBM' 'INTC' 'MSFT' 'ORCL' 'YHOO'}
InitPort: []
AInequality: []
bInequality: []
AEquality: []
bEquality: []
LowerBound: [12×1 double]
UpperBound: []
LowerBudget: 1
UpperBudget: 1
GroupMatrix: []
LowerGroup: []
UpperGroup: []
GroupA: []
GroupB: []
LowerRatio: []
UpperRatio: []
MinNumAssets: []
MaxNumAssets: []
ConditionalBudgetThreshold: []
ConditionalUpperBudget: []
BoundType: [12×1 categorical]
To obtain the portfolio that maximizes the reward-to-risk ratio (which is equivalent to the Sharpe ratio for mean-variance portfolios), search on the efficient frontier iteratively for the portfolio that minimizes the negative of the reward-to-risk ratio:
To do so, use the sratio function, defined in the Local Functions section, to return the negative reward-to-risk ratio for a target return. Then, pass this function to fminbnd. fminbnd iterates through the possible return values and evaluates their associated reward-to-risk ratio. fminbnd returns the optimal return for which the maximum reward-to-risk ratio is achieved (or that minimizes the negative of the reward-to-risk ratio).
% Obtain the minimum and maximum returns of the portfolio. pwgtLimits = estimateFrontierLimits(p); retLimits = estimatePortReturn(p,pwgtLimits); minret = retLimits(1); maxret = retLimits(2); % Search on the frontier iteratively. Find the return that minimizes the % negative of the reward-to-risk ratio. fhandle = @(ret) iterative_local_obj(ret,p); options = optimset('Display', 'off', 'TolX', 1.0e-8); optret = fminbnd(fhandle, minret, maxret, options); % Obtain the portfolio weights associated with the return that achieves % the maximum reward-to-risk ratio. pwgt = estimateFrontierByReturn(p,optret)
pwgt = 12×1
0.0885
0
0
0
0
0.9115
0
0
0
0
0
0
⋮
Use plotFrontier to plot the efficient frontier and estimatePortRisk to estimate the maximum reward-to-risk ratio portfolio.
plotFrontier(p); hold on % Compute the risk level for the maximum reward-to-risk ratio portfolio. optrsk = estimatePortRisk(p,pwgt); scatter(optrsk,optret,50,'red','filled') hold off

Local Functions
This local function that computes the negative of the reward-to-risk ratio for a target return level.
function sratio = iterative_local_obj(ret, obj) % Set the objective function to the negative of the reward-to-risk ratio. risk = estimatePortRisk(obj,estimateFrontierByReturn(obj,ret)); if ~isempty(obj.RiskFreeRate) sratio = -(ret - obj.RiskFreeRate)/risk; else sratio = -ret/risk; end end
See Also
PortfolioCVaR | getScenarios | setScenarios | estimateScenarioMoments | simulateNormalScenariosByMoments | simulateNormalScenariosByData | setCosts | checkFeasibility
Topics
- Troubleshooting CVaR Portfolio Optimization Results
- Creating the PortfolioCVaR Object
- Working with CVaR Portfolio Constraints Using Defaults
- Asset Returns and Scenarios Using PortfolioCVaR Object
- Estimate Efficient Portfolios for Entire Frontier for PortfolioCVaR Object
- Estimate Efficient Frontiers for PortfolioCVaR Object
- Hedging Using CVaR Portfolio Optimization
- PortfolioCVaR Object
- Portfolio Optimization Theory
- PortfolioCVaR Object Workflow