Implement Seemingly Unrelated Regression
This example shows how to include exogenous data for several seemingly unrelated regression (SUR) analyses. The response and exogenous series are random paths from a standard Gaussian distribution.
In seemingly unrelated regression (SUR), each response variable is a function of a subset of the exogenous series, but not of any endogenous variable. That is, for and , the model for response at period is
The indices of the regression coefficients and exogenous predictors indicate that:
You can associate each response with a different subset of exogenous predictors.
The response series might not share intercepts or regression coefficients.
SUR accommodates intra-period innovation correlation, but inter-period innovation independence, i.e.,
Simulate Data from True Model
Suppose that the true model is
where , are multivariate Gaussian random variables each having mean zero and jointly having covariance matrix
Suppose that the paths represent different econometric measurements, e.g. stock returns.
Simulate four exogenous predictor paths from the standard Gaussian distribution.
rng(1); % For reproducibility n = 3; % Number of response series nExo = 4; % Number of exogenous series T = 100; X = randn(100,nExo);
mvregress, the workhorse of estimate, requires you to input the exogenous data in a T-by-1 cell vector. Cell of the cell vector is a design matrix indicating the linear relationship of the exogenous variables with each response series at period . However, estimate associates each predictor to every response. As a result, estimate requires the predictor data in a matrix.
Create a VAR model object that characterizes the true model. Simulate a length 100 path of responses from the model.
aTrue = [1; -1; 0.5]; bTrue = [[2; 4; -2] [-1.5; 2.5; 0.5] [0.5; -1.75; -1.5] [0.75; -0.05; 0.7]]; InnovCov = [1 0.5 -0.05; 0.5 1 0.25; -0.05 0.25 1]; TrueMdl = varm('Beta',bTrue,'Constant',aTrue,'Covariance',InnovCov)
TrueMdl =
varm with properties:
Description: "3-Dimensional VARX(0) Model with 4 Predictors"
SeriesNames: "Y1" "Y2" "Y3"
NumSeries: 3
P: 0
Constant: [1 -1 0.5]'
AR: {}
Trend: [3×1 vector of zeros]
Beta: [3×4 matrix]
Covariance: [3×3 matrix]
Y = simulate(TrueMdl,T,'X',X);SUR Using All Predictors for Each Response Series
Create a VAR model suitable for SUR using the shorthand syntax of varm.
Mdl1 = varm(n,0);
Mdl1 is a varm model object template representing a three-dimensional VAR(0) model. Unlike TrueMdl, none of the coefficients, intercepts, and intra-period covariance matrix have values. Therefore, Mdl1 is suitable for estimation.
Estimate the regression coefficients using estimate. Extract the residuals. Display the estimated model using summarize.
[EstMdl1,~,~,E] = estimate(Mdl1,Y,'X',X);
summarize(EstMdl1)
3-Dimensional VARX(0) Model with 4 Predictors
Effective Sample Size: 100
Number of Estimated Parameters: 15
LogLikelihood: -412.026
AIC: 854.052
BIC: 893.129
Value StandardError TStatistic PValue
_________ _____________ __________ ___________
Constant(1) 0.97898 0.11953 8.1902 2.6084e-16
Constant(2) -1.0644 0.10019 -10.623 2.3199e-26
Constant(3) 0.45323 0.10123 4.4772 7.5611e-06
Beta(1,1) 1.7686 0.11994 14.745 3.2948e-49
Beta(2,1) 3.8576 0.10054 38.37 4.1502e-322
Beta(3,1) -2.2009 0.10158 -21.667 4.1715e-104
Beta(1,2) -1.5508 0.12345 -12.563 3.3861e-36
Beta(2,2) 2.4407 0.10348 23.587 5.2666e-123
Beta(3,2) 0.46414 0.10455 4.4395 9.0156e-06
Beta(1,3) 0.69588 0.13491 5.1583 2.4922e-07
Beta(2,3) -1.7139 0.11308 -15.156 6.8911e-52
Beta(3,3) -1.6414 0.11425 -14.367 8.3713e-47
Beta(1,4) 0.67036 0.12731 5.2654 1.399e-07
Beta(2,4) -0.056437 0.10672 -0.52885 0.59691
Beta(3,4) 0.56581 0.10782 5.2476 1.5406e-07
Innovations Covariance Matrix:
1.3850 0.6673 -0.1591
0.6673 0.9731 0.2165
-0.1591 0.2165 0.9934
Innovations Correlation Matrix:
1.0000 0.5748 -0.1357
0.5748 1.0000 0.2202
-0.1357 0.2202 1.0000
EstMdl is a varm model object containing the estimated parameters. E is a -by- matrix of residuals.
Alternatively, and in this case, you can use the backslash operator on X and Y. However, you must include a column of ones in X for the intercepts.
coeff = ([ones(T,1) X]\Y)
coeff = 5×3
0.9790 -1.0644 0.4532
1.7686 3.8576 -2.2009
-1.5508 2.4407 0.4641
0.6959 -1.7139 -1.6414
0.6704 -0.0564 0.5658
coeff is a n-by- nExo + 1 matrix of estimated regression coefficients and intercepts. The estimated intercepts are in the first column, and the rest of the matrix contains the estimated regression coefficients
Compare all estimates to their true values.
InterceptsTbl = table(aTrue,EstMdl1.Constant,coeff(1,:)',... 'VariableNames',["True" "estimate" "backslash"])
InterceptsTbl=3×3 table
True estimate backslash
____ ________ _________
1 0.97898 0.97898
-1 -1.0644 -1.0644
0.5 0.45323 0.45323
cB = coeff'; cB = cB(:); CoefficientsTbl = table(bTrue(:),EstMdl1.Beta(:),cB((n + 1):end),... 'VariableNames',["True" "estimate" "backslash"])
CoefficientsTbl=12×3 table
True estimate backslash
_____ _________ _________
2 1.7686 1.7686
4 3.8576 3.8576
-2 -2.2009 -2.2009
-1.5 -1.5508 -1.5508
2.5 2.4407 2.4407
0.5 0.46414 0.46414
0.5 0.69588 0.69588
-1.75 -1.7139 -1.7139
-1.5 -1.6414 -1.6414
0.75 0.67036 0.67036
-0.05 -0.056437 -0.056437
0.7 0.56581 0.56581
InnovCovTbl = table(InnovCov,EstMdl1.Covariance,... 'VariableNames',["True" "estimate"])
InnovCovTbl=3×2 table
True estimate
_______________________ ________________________________
1 0.5 -0.05 1.385 0.6673 -0.15914
0.5 1 0.25 0.6673 0.97312 0.21649
-0.05 0.25 1 -0.15914 0.21649 0.99338
The estimates from implementing estimate and the backslash operator are the same, and are fairly close to their corresponding true values.
One way to check the relationship strength between the predictors and responses is to compute the coefficient of determination (i.e., the fraction of variation explained by the predictors), which is
where is the estimated variance of residual series , and is the estimated variance of response series .
R2 = 1 - sum(diag(cov(E)))/sum(diag(cov(Y)))
R2 = 0.9118
The SUR model and predictor data explain approximately 93% of the variation in the response data.