zeros

Create quaternion array with all parts set to zero

Syntax

``quatZeros = zeros('quaternion')``
``quatZeros = zeros(n,'quaternion')``
``quatZeros = zeros(sz,'quaternion')``
``quatZeros = zeros(sz1,...,szN,'quaternion')``
``quatZeros = zeros(___,'like',prototype,'quaternion')``

Description

example

````quatZeros = zeros('quaternion')` returns a scalar quaternion with all parts set to zero.```

example

````quatZeros = zeros(n,'quaternion')` returns an `n`-by-`n` matrix of quaternions.```

example

````quatZeros = zeros(sz,'quaternion')` returns an array of quaternions where the size vector, `sz`, defines `size(quatZeros)`.```

example

````quatZeros = zeros(sz1,...,szN,'quaternion')` returns a `sz1`-by-...-by-`szN` array of quaternions where `sz1,…,szN` indicates the size of each dimension.```

example

````quatZeros = zeros(___,'like',prototype,'quaternion')` specifies the underlying class of the returned quaternion array to be the same as the underlying class of the quaternion prototype.```

Examples

collapse all

Create a quaternion scalar zero.

`quatZeros = zeros('quaternion')`
```quatZeros = quaternion 0 + 0i + 0j + 0k ```

Create an n-by-n array of quaternion zeros.

```n = 3; quatZeros = zeros(n,'quaternion')```
```quatZeros=3×3 quaternion array 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k ```

Create a multidimensional array of quaternion zeros by defining array dimensions in order. In this example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-separated integers.

Specify the dimensions using a row vector and display the results:

```dims = [3,1,2]; quatZerosSyntax1 = zeros(dims,'quaternion')```
```quatZerosSyntax1 = 3x1x2 quaternion array quatZerosSyntax1(:,:,1) = 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k quatZerosSyntax1(:,:,2) = 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k ```

Specify the dimensions using comma-separated integers, and then verify the equivalence of the two syntaxes:

```quatZerosSyntax2 = zeros(3,1,2,'quaternion'); isequal(quatZerosSyntax1,quatZerosSyntax2)```
```ans = logical 1 ```

A quaternion is a four-part hyper-complex number used in three-dimensional representations. You can specify the underlying data type of the parts as `single` or `double`. The default is `double`.

Create a quaternion array of zeros with the underlying data type set to `single`.

`quatZeros = zeros(2,'like',single(1),'quaternion')`
```quatZeros=2×2 quaternion array 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k ```

Verify the underlying class using the `classUnderlying` function.

`classUnderlying(quatZeros)`
```ans = 'single' ```

Input Arguments

collapse all

Size of square quaternion matrix, specified as an integer value. If `n` is `0` or negative, then `quatZeros` is returned as an empty matrix.

Example: `zeros(4,'quaternion')` returns a 4-by-4 matrix of quaternion zeros.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

Output size, specified as a row vector of integer values. Each element of `sz` indicates the size of the corresponding dimension in `quatZeros`. If the size of any dimension is `0` or negative, then `quatZeros` is returned as an empty array.

Example: `zeros([1,4,2],'quaternion')` returns a 1-by-4-by-2 array of quaternion zeros.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

Quaternion prototype, specified as a variable.

Example: `zeros(2,'like',quat,'quaternion')` returns a 2-by-2 matrix of quaternions with the same underlying class as the prototype quaternion, `quat`.

Data Types: `quaternion`

Size of each dimension, specified as two or more integers.

• If the size of any dimension is `0`, then `quatZeros` is returned as an empty array.

• If the size of any dimension is negative, then it is treated as `0`.

Example: `zeros(2,3,'quaternion')` returns a 2-by-3 matrix of quaternion zeros.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

Output Arguments

collapse all

Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form $Q=a+b\text{i}+c\text{j}+d\text{k}$, a quaternion zero is defined as $Q=0+0\text{i}+0\text{j}+0\text{k}$.

Data Types: `quaternion`