aPC Matlab Toolbox: Data-driven Arbitrary Polynomial Chaos
Cite As
Sergey Oladyshkin (2023). aPC Matlab Toolbox: Data-driven Arbitrary Polynomial Chaos (https://www.mathworks.com/matlabcentral/fileexchange/72014-apc-matlab-toolbox-data-driven-arbitrary-polynomial-chaos), MATLAB Central File Exchange. Retrieved .
Oladyshkin, S., and W. Nowak. “Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion.” Reliability Engineering & System Safety, vol. 106, Elsevier BV, Oct. 2012, pp. 179–90, doi:10.1016/j.ress.2012.05.002.
Oladyshkin, Sergey, and Wolfgang Nowak. “Incomplete Statistical Information Limits the Utility of High-Order Polynomial Chaos Expansions.” Reliability Engineering & System Safety, vol. 169, Elsevier BV, Jan. 2018, pp. 137–48, doi:10.1016/j.ress.2017.08.010.
Oladyshkin S., de Barros F. P. J. and Nowak W. Global sensitivity analysis: a flexible and efficient framework with an example from stochastic hydrogeology. Advances in Water Resources 37, 10-2, 2012, doi: 10.1016/j.advwatres.2011.11.001.
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- MATLAB > Mathematics > Elementary Math > Polynomials >
- Engineering > Civil and Environmental Engineering > Environmental Engineering >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.