rombergQuadrature
% [x, err] = rombergQuadrature(fun,tSpan,tol)
%
% Compute the integral(fun), over the domain tSpan, to an accuracy of tol,
% using Romberg quadrature. Fully vectorized.
%
% Good for high-accuracy quadrature over smooth vector functions.
%
% If necessary, this function will automatically sub-divide the interval to
% achieve the desired accuracy. This should only occur when fun is stiff or
% non-smooth.
%
% INPUTS:
% fun = vector function to be integrated
% dx = fun(t)
% t = [1, nt] = time vector
% dx = [nx, nt] = function value at each point in t
% tSpan = [tLow, tUpp] = time span (domain) for integration
% tol = [nx,1] = desired error tolerance along each dimension
%
% OUTPUT:
% x = [nx,1] = integral along each dimension
% err = [nx, 1] = error estimate along each dimension
%
% NOTES:
% algorithm from:
% http://www.math.usm.edu/lambers/mat460/fall09/lecture29.pdf
%
Zitieren als
Matthew Kelly (2024). rombergQuadrature (https://www.mathworks.com/matlabcentral/fileexchange/55703-rombergquadrature), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.1.0.0 | Now the rombergQuadrature automatically detects a non-smooth integrand and sub-divides the interval to achieve the desired accuracy. |
||
1.0.0.0 |