rombergQuadrature

Computes integral of vector functions using Romberg quadrature.
69 Downloads
Aktualisiert 1. Mär 2016

Lizenz anzeigen

% [x, err] = rombergQuadrature(fun,tSpan,tol)
%
% Compute the integral(fun), over the domain tSpan, to an accuracy of tol,
% using Romberg quadrature. Fully vectorized.
%
% Good for high-accuracy quadrature over smooth vector functions.
%
% If necessary, this function will automatically sub-divide the interval to
% achieve the desired accuracy. This should only occur when fun is stiff or
% non-smooth.
%
% INPUTS:
% fun = vector function to be integrated
% dx = fun(t)
% t = [1, nt] = time vector
% dx = [nx, nt] = function value at each point in t
% tSpan = [tLow, tUpp] = time span (domain) for integration
% tol = [nx,1] = desired error tolerance along each dimension
%
% OUTPUT:
% x = [nx,1] = integral along each dimension
% err = [nx, 1] = error estimate along each dimension
%
% NOTES:
% algorithm from:
% http://www.math.usm.edu/lambers/mat460/fall09/lecture29.pdf
%

Zitieren als

Matthew Kelly (2024). rombergQuadrature (https://www.mathworks.com/matlabcentral/fileexchange/55703-rombergquadrature), MATLAB Central File Exchange. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2012a
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Veröffentlicht Versionshinweise
1.1.0.0

Now the rombergQuadrature automatically detects a non-smooth integrand and sub-divides the interval to achieve the desired accuracy.

1.0.0.0