Problem 628. Book Club
A book club that has K members, as a group, have to read N books. Return how many different ways the members could read the books. All of the books must be read by at least one member of the group and all of the members must read one and only one book.
For Example, for K = 3 and N = 2, there are 6 ways
- Member 1 reads book 1, Member 2 reads book 1, Member 3 reads book 2
- Member 1 reads book 1, Member 2 reads book 2, Member 3 reads book 1
- Member 1 reads book 1, Member 2 reads book 2, Member 3 reads book 2
- Member 1 reads book 2, Member 2 reads book 1, Member 3 reads book 1
- Member 1 reads book 2, Member 2 reads book 1, Member 3 reads book 2
- Member 1 reads book 2, Member 2 reads book 2, Member 3 reads book 1
Note: all of the test cases use small values of n and k to allow for brute-force solutions.
Solution Stats
Problem Comments
-
4 Comments
@bmtran, could you please specify the problem to a greater detail? Are there any constraints such as: each member should read at least one book? Do permutations of who reads which book matter? Cheers, VL.
Same for me... i'm not sure if I understand the problem correctly... If my combinatorics is right, the solution should simply be factorial(k)/factorial(k-n) but apparently this is not the case... I assume I'm misinterpreting something???
sorry if i wasn't clear enough. i'm revising my question to be more specific now
Mathematical Reformulation: How many K-letter words can be formed using N-letters if repetition of letters is allowed and each letter appears at least once?....Hint: A closed form solution exist aside the brute force solutions.
Solution Comments
Show commentsProblem Recent Solvers20
Suggested Problems
-
Find the alphabetic word product
3455 Solvers
-
3480 Solvers
-
Remove the polynomials that have positive real elements of their roots.
1739 Solvers
-
Set some matrix elements to zero
620 Solvers
-
Change the sign of even index entries of the reversed vector
634 Solvers
More from this Author56
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!