Problem 58478. Optimal saving in Solow's classical growth model
Let us consider a simplified version of Solow's classical growth model. Let
,
,
,
and
denote production, the capital stock, labor, (gross) investment, savings and consumption at time t respectively (all variables are in real rather than nominal terms), and assume that output is produced using a neoclassical production function using capital and labor as inputs,
, satisfying the following conditions:
- The marginal product of capital and labor is positive:
, and
.
- The marginal product of capital and labor is diminishing:
, and
.
- Production exhibits constant returns to scale: F is homogenous of degree one, i.e.
for all
.
- F satisfies the Inada conditions:
, and
.
Capital in the economy accumulates according to the law of motion
, where
is the rate of depreciation; investment equals savings, which are assumed to be a constant fraction of output,
for all t, for some
. Output that is not saved is consumed (in other words, we assume a closed economy with no government activity), so that
for all t.
Assume that the population and hence the labor force is constant (this kind of defeats the purpose of a growth model, but we are considering a simplified version only). It is helpful to recast the model in per-capita (technically, per-laborer) terms by dividing by
throughout and taking advantage of the fact that F is homogenous of degree one. We use lower-case letters for per-capita terms:
is the capital intensity,
is output per capita, and so on. We also write
; f is the intensive form of the production function F.
The model economy is in its steady state when the per-capita variables do not change; denote the steady-state capital intensity by
. An expression implicitly characterizing
can be derived from the law of motion for capital by moving to per-capita variables and replacing
and
with
throughout.
Since in the steady state,
is constant, so is output per capita
and hence consumption per capita
.
depends on three things: the depreciation rate δ, the savings rate s, and the macroeconomic production function F (equivalently, f). A social planner seeking to maximize steady-state per-capita consumption may not be able to change δ or F, but can maximize
by influencing s. We will call the savings rate that maximizes per-capita consumption the golden rule savings rate and denote it
; similarly, we will denote steady-state values for k, c etc. implied by
as
,
and so forth.
To find
, we proceed as follows:
- find an expression for
by using the relationship
, moving to per-capita terms, and using the expression characterizing
to replace the term
with
;
- take the derivative w.r.t. s, keeping in mind that
depends on s;
- set the resulting expression to zero, obtaining an equality identifying δ with the marginal product of capital, in per-capita terms, when the economy follows the golden rule;
- substitute this expression back into the expression characterizing
and solving for s.
Your task is now simple (in principle): assume that macroeconomic production follows a Cobb-Douglas relationship,
,
(you may verify that this satisfies the conditions listed above). For given values of the (constant) technology parameter A, the capital elasticity of output α and the depreciation rate δ, please compute the golden rule savings rate
, and the resulting steady-state capital intensity
, per-capita output
and per-capita consumption
.
Solution Stats
Solution Comments
Show commentsProblem Recent Solvers2
Suggested Problems
-
Remove white space from the string
196 Solvers
-
07 - Common functions and indexing 4
412 Solvers
-
5241 Solvers
-
726 Solvers
-
Find the dimensions of a matrix
529 Solvers
More from this Author17
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!