Problem 56308. Korselt's Criterion
A composite integer n (n>=2) divides b^n-b, i.e. mod(b^n-b,n)==0, for all integers b if and only if n is square-free (doesn't have repeating prime factors) and n-1 is divisible by p-1, i.e. mod(n-1,p-1)==0, for all prime divisors p of n.
Given a positive integer x, return c, the number of integers n satisfying Korselt's Criterion, where 1 < n < 10^x.
Example:
x = 2;
c = 0
Example:
x = 3;
c = 1
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers6
Suggested Problems
-
1903 Solvers
-
1597 Solvers
-
Find and replaces spaces from a input string with *
162 Solvers
-
487 Solvers
-
Create cell array of numeric arrays
42 Solvers
More from this Author45
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!