A prime-sided rectangle is a rectangle having sides represented by prime numbers. The figure below shows all the possible prime-sided rectangles whose areas are less than or equal to 25:
Given an area limit 'n', count the total number of prime-sided rectangles that can be formed , with areas less than or equal to 'n'.
In the figure above, we can see that there are only 9 prime-sided recatangles having areas are less than or equal to 25. Therefore, for n = 25 the output should be 9. For n = 100, there are 34 such rectangles.
NOTE: Rotations are not important and are counted only once.
Solution Stats
Problem Comments
1 Comment
Solution Comments
Show comments
Loading...
Problem Recent Solvers8
Suggested Problems
-
Select every other element of a vector
36176 Solvers
-
Return the 3n+1 sequence for n
8488 Solvers
-
2538 Solvers
-
Project Euler: Problem 10, Sum of Primes
2091 Solvers
-
118 Solvers
More from this Author116
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
I am getting 2 less on test 7. Not sure what the problem is.