Problem 42453. Divisible by n, prime vs. composite divisors
In general, there are two types of divisibility checks; the first involves composite divisors and the second prime divisors, including powers of prime numbers (technically composite divisors, though they often function similar to prime numbers for the sake of divisibility). We'll get into the specifics of the two divisibility check types in subsequent problems. For now, we'll segregate numbers into three groups, based on type (n_type) while also returning the number's highest-power factorization (hpf). Write a function to return these two variables for a given number; see the following examples for reference:
n = 11 | n_type = 1 (prime) | hpf = [11] n = 31 | n_type = 1 (prime) | hpf = [31] n = 9 | n_type = 2 (prime power) | hpf = [9] (3^2) n = 32 | n_type = 2 (prime power) | hpf = [32] (2^5) n = 49 | n_type = 2 (prime power) | hpf = [49] (7^2) n = 21 | n_type = 3 (composite) | hpf = [3,7] n = 39 | n_type = 3 (composite) | hpf = [3,13] n = 42 | n_type = 3 (composite) | hpf = [2,3,7] n = 63 | n_type = 3 (composite) | hpf = [9,7] ([3^2,7]) n = 90 | n_type = 3 (composite) | hpf = [2,9,5] ([2,3^2,5])
Previous problem: divisible by 16. Next problem: Divisible by n, prime divisors (including powers).
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers109
Suggested Problems
-
792 Solvers
-
Are all the three given point in the same line?
584 Solvers
-
Given a matrix, swap the 2nd & 3rd columns
1143 Solvers
-
Given a square and a circle, please decide whether the square covers more area.
1221 Solvers
-
986 Solvers
More from this Author139
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!