Given the square root of a square number, seed, and a range, n, find the square number, Z as well as the other side, y, the square root of a square number i.e. return the hypotenuse squared as well as the length of the other side. Note that n is the number of squares to search through starting with one.
HINT: Z = seed^2 + y^2 where Z = z^2, find Z first and then y.
Note that Z, seed^2 and y^2 are all perfect squares.
>> [z s] = findPerfectZ(3,6)
z = 25
s = 4
>>
There's a problem with the solution suite. For seed=12 and n=16, the proposed answer of 5, 12, 13 as a Pythagorean triple is indeed a good one. However, 9, 12, 15 is equally valid but not included as an answer. To avoid this, I would suggest changing the problem so that it requires finding the answer with the minimum Z^2 to avoid ambiguity.
Return a list sorted by number of occurrences
1225 Solvers
Create a square matrix of multiples
330 Solvers
Flag largest magnitude swings as they occur
524 Solvers
The Answer to Life, the Universe, and Everything
312 Solvers
Output any real number that is neither positive nor negative
250 Solvers