Problem 2672. Largest Geometric Series
In a geometric series, ratio of adjacent elements is always a constant value. For example, [2 6 18 54] is a geometric series with a constant adjacent-element ratio of 3.
A vector will be given. Find the largest geometric series that can be formed from the vector.
Example:
input = [2 4 8 16 1000 2000];
output = [2 4 8 16];
Update - Test case added on 21/8/22
Solution Stats
Problem Comments
-
3 Comments
Jean-Marie Sainthillier
on 18 Dec 2015
Interesting problem but tests are too tricky.
Rafael S.T. Vieira
on 16 Aug 2020
I am not sure that a list of equal numbers qualifies as a series. Would it be a geometric or an arithmetic series?
Lincoln Poon
on 17 Feb 2021
'Randperm' is making this question a whole lot harder...
Solution Comments
Show commentsProblem Recent Solvers94
Suggested Problems
-
5972 Solvers
-
Project Euler: Problem 2, Sum of even Fibonacci
2259 Solvers
-
1400 Solvers
-
Side of an equilateral triangle
6009 Solvers
-
Write a function man that takes a row vector v and returns a matrix H as follows..
611 Solvers
More from this Author44
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!