Why is the Fourier Transform of symbolic Laplacian function (2nd partial derivative) not being found?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I am needing to find the Fourier Transform of the following symbolic expression:
syms U(x,y,z) beta k
LHS = laplacian(U) + beta.^2*U
LHS_FT = fourier(LHS)
That is, ![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/709412/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/709412/image.png)
I'm needing to take the spatial 3D Fourier Transform of LHS.
This is the output I get:
LHS(x, y, z) =
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/709417/image.png)
LHS_FT(y, z) =
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/709422/image.png)
I am stuck here, any help would be much appreciated! Thank you in advance!
7 Kommentare
David Goodmanson
am 18 Aug. 2021
Bearbeitet: David Goodmanson
am 18 Aug. 2021
Hi Paul,
the answer was
LHS_FT =
beta^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kx^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
+ fourier(fourier(fourier(diff(U(x, y, z), y, y), x, kx), y, ky), z, kz)
+ fourier(fourier(fourier(diff(U(x, y, z), z, z), x, kx), y, ky), z, kz)
so it could do the conversion d^2/dx^2 --> -kx^2, but it couldn't convert d^2/dy^2 or d^2/dz^2, which would have made the nice symmetric expression
beta^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kx^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- ky^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
- kz^2*fourier(fourier(fourier(U(x, y, z), x, kx), y, ky), z, kz)
Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!