how to triple Integrate this?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Saurabh Agarwal
am 7 Aug. 2021
Beantwortet: Walter Roberson
am 8 Aug. 2021
clear
clc
D = 200000;
syms xi eta zeta
N(1) = (1/8)*(1-xi)*(1-eta)*(1-zeta);
N(2) = (1/8)*(1+xi)*(1-eta)*(1-zeta);
N(3) = (1/8)*(1+xi)*(1+eta)*(1-zeta);
N(4) = (1/8)*(1-xi)*(1+eta)*(1-zeta);
N(5) = (1/8)*(1-xi)*(1-eta)*(1+zeta);
N(6) = (1/8)*(1+xi)*(1-eta)*(1+zeta);
N(7) = (1/8)*(1+xi)*(1+eta)*(1+zeta);
N(8) = (1/8)*(1-xi)*(1+eta)*(1+zeta);
for i = 1:8
N_xi(i) = diff(N(i),xi);
N_eta(i) = diff(N(i),eta);
N_zeta(i) = diff(N(i),zeta);
end
% Nodes xi eta zeta
% 1 -1 -1 -1
% 2 1 -1 -1
% 3 1 1 -1
% 4 -1 1 -1
% 5 -1 -1 1
% 6 1 -1 1
% 7 1 1 1
% 8 -1 1 1
% x1_xi = (N_xi(1)*-1) + (N_xi(2)*1) + (N_xi(3)*1) + (N_xi(4)*-1) + (N_xi(5)*-1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*-1);
% x1_eta = (N_eta(1)*-1) + (N_eta(2)*1) + (N_eta(3)*1) + (N_eta(4)*-1) + (N_eta(5)*-1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*-1);
% x1_zeta = (N_zeta(1)*-1) + (N_zeta(2)*1) + (N_zeta(3)*1) + (N_zeta(4)*-1) + (N_zeta(5)*-1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*-1);
% x2_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*1) + (N_xi(4)*1) + (N_xi(5)*-1) + (N_xi(6)*-1) + (N_xi(7)*1) + (N_xi(8)*1);
% x2_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*1) + (N_eta(4)*1) + (N_eta(5)*-1) + (N_eta(6)*-1) + (N_eta(7)*1) + (N_eta(8)*1);
% x2_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*1) + (N_zeta(4)*1) + (N_zeta(5)*-1) + (N_zeta(6)*-1) + (N_zeta(7)*1) + (N_zeta(8)*1);
% x3_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*-1) + (N_xi(4)*-1) + (N_xi(5)*1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*1);
% x3_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*-1) + (N_eta(4)*-1) + (N_eta(5)*1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*1);
% x3_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*-1) + (N_zeta(4)*-1) + (N_zeta(5)*1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*1);
%
% J = [x1_xi x1_eta x1_zeta;x2_xi x2_eta x2_zeta;x3_xi x3_eta x3_zeta];
J = [1 0 0;0 1 0;0 0 1];
Inv_J = inv(J);
Det_J = det(J);
N_x = [Inv_J(1,1) * N_xi; Inv_J(2,2) * N_eta; Inv_J(3,3) * N_zeta];
N_x = [N_x(1,1) 0 0 N_x(1,2) 0 0 N_x(1,3) 0 0 N_x(1,4) 0 0 N_x(1,5) 0 0 N_x(1,6) 0 0 N_x(1,7) 0 0 N_x(1,8) 0 0;...
0 N_x(2,1) 0 0 N_x(2,2) 0 0 N_x(2,3) 0 0 N_x(2,4) 0 0 N_x(2,5) 0 0 N_x(2,6) 0 0 N_x(2,7) 0 0 N_x(2,8) 0;...
0 0 N_x(3,1) 0 0 N_x(3,2) 0 0 N_x(3,3) 0 0 N_x(3,4) 0 0 N_x(3,5) 0 0 N_x(3,6) 0 0 N_x(3,7) 0 0 N_x(3,8)];
K_ma = N_x.' * N_x;
for i = 1:24
for j = 1:24
K_mat(i,j) = @(xi,eta,zeta) K_ma(i,j);
K(i,j) = integral3(K_ma(i,j),-1,1,-1,1,-1,1);
end
end
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 8 Aug. 2021
clear
clc
D = 200000;
syms xi eta zeta
N(1) = (1/8)*(1-xi)*(1-eta)*(1-zeta);
N(2) = (1/8)*(1+xi)*(1-eta)*(1-zeta);
N(3) = (1/8)*(1+xi)*(1+eta)*(1-zeta);
N(4) = (1/8)*(1-xi)*(1+eta)*(1-zeta);
N(5) = (1/8)*(1-xi)*(1-eta)*(1+zeta);
N(6) = (1/8)*(1+xi)*(1-eta)*(1+zeta);
N(7) = (1/8)*(1+xi)*(1+eta)*(1+zeta);
N(8) = (1/8)*(1-xi)*(1+eta)*(1+zeta);
for i = 1:8
N_xi(i) = diff(N(i),xi);
N_eta(i) = diff(N(i),eta);
N_zeta(i) = diff(N(i),zeta);
end
% Nodes xi eta zeta
% 1 -1 -1 -1
% 2 1 -1 -1
% 3 1 1 -1
% 4 -1 1 -1
% 5 -1 -1 1
% 6 1 -1 1
% 7 1 1 1
% 8 -1 1 1
% x1_xi = (N_xi(1)*-1) + (N_xi(2)*1) + (N_xi(3)*1) + (N_xi(4)*-1) + (N_xi(5)*-1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*-1);
% x1_eta = (N_eta(1)*-1) + (N_eta(2)*1) + (N_eta(3)*1) + (N_eta(4)*-1) + (N_eta(5)*-1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*-1);
% x1_zeta = (N_zeta(1)*-1) + (N_zeta(2)*1) + (N_zeta(3)*1) + (N_zeta(4)*-1) + (N_zeta(5)*-1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*-1);
% x2_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*1) + (N_xi(4)*1) + (N_xi(5)*-1) + (N_xi(6)*-1) + (N_xi(7)*1) + (N_xi(8)*1);
% x2_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*1) + (N_eta(4)*1) + (N_eta(5)*-1) + (N_eta(6)*-1) + (N_eta(7)*1) + (N_eta(8)*1);
% x2_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*1) + (N_zeta(4)*1) + (N_zeta(5)*-1) + (N_zeta(6)*-1) + (N_zeta(7)*1) + (N_zeta(8)*1);
% x3_xi = (N_xi(1)*-1) + (N_xi(2)*-1) + (N_xi(3)*-1) + (N_xi(4)*-1) + (N_xi(5)*1) + (N_xi(6)*1) + (N_xi(7)*1) + (N_xi(8)*1);
% x3_eta = (N_eta(1)*-1) + (N_eta(2)*-1) + (N_eta(3)*-1) + (N_eta(4)*-1) + (N_eta(5)*1) + (N_eta(6)*1) + (N_eta(7)*1) + (N_eta(8)*1);
% x3_zeta = (N_zeta(1)*-1) + (N_zeta(2)*-1) + (N_zeta(3)*-1) + (N_zeta(4)*-1) + (N_zeta(5)*1) + (N_zeta(6)*1) + (N_zeta(7)*1) + (N_zeta(8)*1);
%
% J = [x1_xi x1_eta x1_zeta;x2_xi x2_eta x2_zeta;x3_xi x3_eta x3_zeta];
J = [1 0 0;0 1 0;0 0 1];
Inv_J = inv(J);
Det_J = det(J);
N_x = [Inv_J(1,1) * N_xi; Inv_J(2,2) * N_eta; Inv_J(3,3) * N_zeta];
N_x = [N_x(1,1) 0 0 N_x(1,2) 0 0 N_x(1,3) 0 0 N_x(1,4) 0 0 N_x(1,5) 0 0 N_x(1,6) 0 0 N_x(1,7) 0 0 N_x(1,8) 0 0;...
0 N_x(2,1) 0 0 N_x(2,2) 0 0 N_x(2,3) 0 0 N_x(2,4) 0 0 N_x(2,5) 0 0 N_x(2,6) 0 0 N_x(2,7) 0 0 N_x(2,8) 0;...
0 0 N_x(3,1) 0 0 N_x(3,2) 0 0 N_x(3,3) 0 0 N_x(3,4) 0 0 N_x(3,5) 0 0 N_x(3,6) 0 0 N_x(3,7) 0 0 N_x(3,8)];
K_ma = N_x.' * N_x;
K = int(int(int(K_ma,xi,-1,1),eta,-1,1),zeta,-1,1)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Least Squares finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!