"Eliminate" command.
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hey everyone, im having trouble again. I cant seem to get the "eliminate" command to work. My code is here:
syms a b p x L R y
F = [p/2,0];
xpara = [x sqrt(2*p*x)];
eqn1 = a*F(1,1)+b == 0;
eqn2 = a*x+b == xpara(1,2);
eqns = [eqn1 eqn2];
%L - lambda.
eqns = [a*F(1,1)+b == 0, subs(a*x+b,x,L) == subs(xpara(1,2),x,L)];
S=solve(eqns,[a b],'ReturnConditions',true);
S.a;
S.b;
sirge =simplify(S.a*x+S.b);
loikepunktx = solve(sirge==-xpara(1,2),x,'ReturnConditions',true);
%sirge võrrand
loikepunktx.x=loikepunktx.x(2,1);
loikepunktx.x;
sirge1 = simplify(S.a * loikepunktx.x + S.b);
sirge1;
LP = [loikepunktx.x, sirge1];
%Center = KP
KP = subs(simplify((xpara + LP)/2),x,L);
%ok so far
xpara;
KP;
%raadius
R = simplify(subs(sqrt((xpara(1,1)-KP(1,1))^2+(xpara(1,2)-KP(1,2))^2),x,L));
%raadius ok
%mähisjoon
Parv = ((x - KP(1,1))^2 + (y - KP(1,2))^2 - R^2);
%parv ok
Tuletis = simplify(diff(Parv,L));
%tuletis ok
eqn=[Parv==0; Tuletis==0]
eemaldus = eliminate(eqn,L)
And the eliminate gives me an error:

But my goal is to get this:
All works im wolframalpha and i can check the outcomes there but Matlab just does not want to be friendly with me.
0 Kommentare
Antworten (1)
Walter Roberson
am 30 Mai 2021
Both of your equations contain sqrt(L*p) and so are not rational expressions of polynomials in your variable L.
Provided that you know that L is positive, then what you can do is:
syms a b p x L R y
F = [p/2,0];
xpara = [x sqrt(2*p*x)];
eqn1 = a*F(1,1)+b == 0;
eqn2 = a*x+b == xpara(1,2);
eqns = [eqn1 eqn2];
%L - lambda.
eqns = [a*F(1,1)+b == 0, subs(a*x+b,x,L) == subs(xpara(1,2),x,L)];
S=solve(eqns,[a b],'ReturnConditions',true);
S.a;
S.b;
sirge =simplify(S.a*x+S.b);
loikepunktx = solve(sirge==-xpara(1,2),x,'ReturnConditions',true);
%sirge võrrand
loikepunktx.x=loikepunktx.x(2,1);
loikepunktx.x;
sirge1 = simplify(S.a * loikepunktx.x + S.b);
sirge1;
LP = [loikepunktx.x, sirge1];
%Center = KP
KP = subs(simplify((xpara + LP)/2),x,L);
%ok so far
xpara;
KP;
%raadius
R = simplify(subs(sqrt((xpara(1,1)-KP(1,1))^2+(xpara(1,2)-KP(1,2))^2),x,L));
%raadius ok
%mähisjoon
Parv = ((x - KP(1,1))^2 + (y - KP(1,2))^2 - R^2);
%parv ok
Tuletis = simplify(diff(Parv,L));
%tuletis ok
eqn=[Parv==0; Tuletis==0]
syms sqL positive
eqn2 = simplify(subs(eqn, L, sqL^2))
eemaldus = eliminate(eqn2, sqL)
At the moment I do not understand how it comes up with a solution involving up to p^104, and I am concerned that that might be the result of an approximation rather than a complete solution.
2 Kommentare
Paul
am 30 Mai 2021
If I understand the eliminate() function, it returns an expression that is equal to zero.
eqn3 = eemaldus == 0;
simplify(eqn3)
So really only an expresion in p^6 it would appear.
Walter Roberson
am 30 Mai 2021
Good point -- it must be possible to factor out an expression in p.
I would be concerned that doing so might be losing theoretical roots such as p being 92'nd roots of -2*x... but I doubt those are really roots anyhow.
Siehe auch
Kategorien
Mehr zu Spline Postprocessing finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

