error: IDASolve failed
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Imene Yed
am 23 Mai 2021
Kommentiert: Imene Yed
am 28 Mai 2021
Hi I was trying to resolve a large ODE system with ODE45 ,the calculus didn't stop and it took more than 12hours ,so I changed the ODE to ODE15s ,here is my code and the errors that I've found
...k1 ...k2.k3...
IC = 1e19*ones(1,43); % Test: IC = 1e9*ones(1,43)
%%
F=@(t,n)([k1*n(2)*n(42)+k15*n(5)*n(9)+k16*n(5)*n(26)+k25*n(4)*n(26)+k29*n(4)*n(9)+k33*n(4)*n(11)+k39*n(7)*n(26)+k40*n(7)*n(27)+k43*n(7)*n(9)+k44*n(7)*n(12)+k48*n(9)*n(9)+k59*n(11)*n(42)+k72*n(2)*n(24)+k104*n(3)*n(5)+k105*n(3)*n(8)+k106*n(3)*n(25)+k117*n(18)*n(2)+k119*n(3)*n(43)+k122*n(11)*n(43)+k124*n(13)*n(43)+k130*n(22)*n(43)-k4*n(1)*n(37)-k8*n(1)*n(15)-k9*n(1)*n(26)-k10*n(1)*n(24)-k11*n(1)*n(20)-k12*n(1)*n(35)-k13*n(1)*n(22)-k61*n(2)*n(1)-k64*n(1)*n(13)-k65*n(1)*n(4)-k66*n(1)*n(9)-k67*n(1)*n(5)-k68*n(1)*n(1)-k69*n(1)*n(7)-k73*n(1)*n(27)-k74*n(1)*n(11)-k75*n(1)*n(23)-k76*n(1)*n(21)-k77*n(1)*n(19)-k118*n(1)*n(43)-k132*n(1)*n(42)-k136*n(1)*n(3)-k137*n(1)*n(12)-k138*n(1)*n(14)-k139*n(1)*n(6)-2*k164*n(7)*n(1)*n(1)+k164*n(7)*n(1)^(2)-k163*n(1)*n(15)*n(4)+k163*n(1)*n(15)*n(4)-k165*n(1)*n(32)*n(4)+k165*n(1)*n(32)*n(4);
-k1*n(2)*n(42)-k5*n(2)*n(15)-k6*n(2)*n(30)-k7*n(2)*n(36)-k61*n(2)*n(1)-k62*n(2)*n(7)-k63*n(2)*n(4)-k72*n(2)*n(24)-k117*n(18)*n(2)+k45*n(7)*n(11)+k73*n(1)*n(27)+k74*n(1)*n(11)+k75*n(1)*n(23)+k76*n(1)*n(21)+k77*n(1)*n(19)+k118*n(1)*n(43)+k122*n(11)*n(43);
k32*n(4)*n(12)+k132*n(1)*n(42)-k14*n(3)*n(24)-k104*n(3)*n(5)-k105*n(3)*n(8)-k106*n(3)*n(25)-k119*n(3)*n(43)-k136*n(1)*n(3)-k140*n(3)*n(4)-k141*n(3)*n(15)-k142*n(3)*n(7);
k2*n(5)*n(42)+k8*n(1)*n(15)+k10*n(1)*n(24)+k13*n(1)*n(22)+k14*n(3)*n(24)+k35*n(7)*n(15)+k36*n(7)*n(19)+k37*n(7)*n(24)+k38*n(7)*n(32)+k52*n(15)*n(24)+k53*n(15)*n(20)+k55*n(15)*n(22)+k56*n(15)*n(26)+k78*n(5)*n(9)+k79*n(5)*n(22)+k80*n(5)*n(30)+k81*n(5)*n(15)+k84*n(6)*n(15)+k85*n(6)*n(26)+k104*n(3)*n(5)+2*k107*n(5)*n(6)+k108*n(5)*n(18)+k109*n(6)*n(8)+k120*n(6)*n(43)+2*k126*n(15)*n(43)+k128*n(19)*n(43)+k130*n(22)*n(43)+k131*n(24)*n(43)+k162*n(42)*n(4)*n(15)-k19*n(4)*n(24)-k20*n(4)*n(32)-k21*n(4)*n(30)-k22*n(4)*n(30)-k23*n(4)*n(20)-k24*n(4)*n(36)-k25*n(4)*n(26)-k26*n(4)*n(26)-k27*n(4)*n(13)-k28*n(4)*n(35)-k29*n(4)*n(9)-k30*n(4)*n(21)-k31*n(4)*n(14)-k32*n(4)*n(12)-k33*n(4)*n(11)-k63*n(2)*n(4)-k65*n(1)*n(4)-2*k70*n(4)*n(4)-k82*n(4)*n(21)-k83*n(4)*n(23)-k133*n(4)*n(42)-k140*n(3)*n(4)-k143*n(4)*n(6)-k144*n(4)*n(12)-k161*n(42)*n(4)*n(15)-k162*n(42)*n(4)*n(15)-k163*n(1)*n(15)*n(4)-k165*n(1)*n(32)*n(4);
k5*n(2)*n(15)+k34*n(8)*n(15)+k82*n(4)*n(21)+k83*n(4)*n(23)+k128*n(19)*n(43)-k19*n(4)*n(24)-k20*n(4)*n(32)-k21*n(4)*n(30)-k22*n(4)*n(30)-k23*n(4)*n(20)-k24*n(4)*n(36)-k25*n(4)*n(26)-k26*n(4)*n(26)-k27*n(4)*n(13)-k28*n(4)*n(35)-k29*n(4)*n(9)-k30*n(4)*n(21)-k31*n(4)*n(14)-k32*n(4)*n(12)-k33*n(4)*n(11)-k63*n(2)*n(4)-k65*n(1)*n(4)-2*k70*n(4)*n(4)-k82*n(4)*n(21)-k83*n(4)*n(23)-k133*n(4)*n(42)-k140*n(3)*n(4)-k143*n(4)*n(6)-k144*n(4)*n(12)-k161*n(42)*n(4)*n(15)-k162*n(42)*n(4)*n(15)-k163*n(1)*n(15)*n(4)-k165*n(1)*n(32)*n(4);
k133*n(4)*n(42)+k161*n(42)*n(4)*n(15)-k84*n(6)*n(15)-k85*n(6)*n(26)-k107*n(5)*n(6)-k109*n(6)*n(8)-k120*n(6)*n(43)-k139*n(1)*n(6)-k143*n(4)*n(6)-k145*n(6)*n(24)-k146*n(6)*n(22)-k147*n(6)*n(7);
k3*n(8)*n(42)+k9*n(1)*n(26)+k11*n(1)*n(20)+k18*n(5)*n(20)+k19*n(4)*n(24)+k23*n(4)*n(20)+k26*n(4)*n(26)+k30*n(4)*n(21)+2*k60*n(21)*n(42)+k86*n(8)*n(15)+k87*n(8)*n(9)+k88*n(8)*n(22)+k89*n(8)*n(26)+k90*n(8)*n(24)+k105*n(3)*n(8)+k109*n(6)*n(8)+k110*n(8)*n(18)+k111*n(8)*n(12)+k112*n(8)*n(28)+k113*n(8)*n(14)+2*k129*n(20)*n(43)+k131*n(24)*n(43)+2*k159*n(20)*n(42)-k35*n(7)*n(15)-k36*n(7)*n(19)-k37*n(7)*n(24)-k38*n(7)*n(32)-k39*n(7)*n(26)-k40*n(7)*n(27)-k41*n(7)*n(13)-k42*n(7)*n(14)-k43*n(7)*n(9)-k44*n(7)*n(12)-k45*n(7)*n(11)-k46*n(7)*n(35)-k62*n(2)*n(7)-k69*n(1)*n(7)-k71*n(8)*n(7)-k91*n(7)*n(21)-k142*n(3)*n(7)-k147*n(6)*n(7)-k164*n(7)*n(1)*n(1);
k91*n(7)*n(21)-k3*n(8)*n(42)-k34*n(8)*n(15)-k71*n(8)*n(7)-k86*n(8)*n(15)-k87*n(8)*n(9)-k88*n(8)*n(22)-k89*n(8)*n(26)-k90*n(8)*n(24)-k105*n(3)*n(8)-k109*n(6)*n(8)-k110*n(8)*n(18)-k111*n(8)*n(12)-k112*n(8)*n(28)-k113*n(8)*n(14);
k9*n(1)*n(26)+k12*n(1)*n(35)+k13*n(1)*n(22)+k27*n(4)*n(13)+k41*n(7)*n(13)+k68*n(1)*n(1)+k74*n(1)*n(11)+k94*n(11)*n(24)+k111*n(8)*n(12)+k115*n(12)*n(25)+k121*n(9)*n(43)+k123*n(12)*n(43)+k124*n(13)*n(43)+k136*n(1)*n(3)+k153*n(10)*n(42)+k154*n(10)^(2)+k155*n(10)*n(1)-k15*n(5)*n(9)-k29*n(4)*n(9)-k43*n(7)*n(9)-k47*n(9)*n(15)-2*k48*n(9)*n(9)-k49*n(9)*n(19)-k66*n(1)*n(9)-k78*n(5)*n(9)-k87*n(8)*n(9)-k92*n(9)*n(23)-k93*n(9)*n(27)-k121*n(9)*n(43)-k134*n(9)*n(42)-k148*n(9)*n(12)-k150*n(9)*n(42);
k150*n(9)*n(42)-k153*n(10)*n(42)-k154*n(10)^(2)-k155*n(10)*n(1);
k61*n(2)*n(1)+k78*n(5)*n(9)+k87*n(8)*n(9)+k92*n(9)*n(23)+k93*n(9)*n(27)-k33*n(4)*n(11)-k45*n(7)*n(11)-k50*n(11)*n(15)-k59*n(11)*n(42)-k74*n(1)*n(11)-k94*n(11)*n(24)-k122*n(11)*n(43);
-k32*n(4)*n(12)-k44*n(7)*n(12)-k111*n(8)*n(12)-k115*n(12)*n(25)-k123*n(12)*n(43)-k137*n(1)*n(12)-k144*n(4)*n(12)-k148*n(9)*n(12)-k149*n(12)*n(13)+k31*n(4)*n(14)+k42*n(7)*n(14)+k134*n(9)*n(42);
k48*n(9)*n(9)+k66*n(1)*n(9)+k113*n(8)*n(14)+k114*n(14)*n(25)+k125*n(14)*n(43)+k137*n(1)*n(12)-k27*n(4)*n(13)-k41*n(7)*n(13)-k64*n(1)*n(13)-k124*n(13)*n(43)-k135*n(13)*n(42)-k149*n(12)*n(13);
k135*n(13)*n(42)-k31*n(4)*n(14)-k42*n(7)*n(14)-k113*n(8)*n(14)-k114*n(14)*n(25)-k125*n(14)*n(43)-k138*n(1)*n(14);
k17*n(5)*n(32)+k19*n(4)*n(24)+k20*n(4)*n(32)+k21*n(4)*n(30)+k57*n(24)*n(24)+k70*n(4)*n(4)+k77*n(1)*n(19)+k97*n(19)*n(32)+k98*n(19)*n(24)+k108*n(5)*n(18)+k110*n(8)*n(18)+k116*n(18)*n(25)+k117*n(18)*n(2)+k127*n(18)*n(43)+k143*n(4)*n(6)+2*k156*n(18)*n(15)+2*k157*n(18)*n(16)+2*k158*n(18)*n(17)+k161*n(42)*n(4)*n(15)-k5*n(2)*n(15)-k8*n(1)*n(15)-k34*n(8)*n(15)-k35*n(7)*n(15)-k47*n(9)*n(15)-k50*n(11)*n(15)-k51*n(15)*n(37)-k52*n(15)*n(24)-k53*n(15)*n(20)-k54*n(15)*n(27)-k55*n(15)*n(22)-k56*n(15)*n(26)-k81*n(5)*n(15)-k84*n(6)*n(15)-k86*n(8)*n(15)-k95*n(15)*n(21)-k96*n(15)*n(23)-k126*n(15)*n(43)-k141*n(3)*n(15)-k151*n(15)*n(42)-k152*n(15)*n(42)-k156*n(18)*n(15)-k161*n(42)*n(4)*n(15)-k162*n(42)*n(4)*n(15)-k163*n(1)*n(15)*n(4);
k151*n(42)*n(15)-k157*n(16)*n(18);
k152*n(42)*n(15)-k158*n(17)*n(18);
k84*n(6)*n(15)+k162*n(42)*n(4)*n(15)-k108*n(5)*n(18)-k110*n(8)*n(18)-k116*n(18)*n(25)-k117*n(18)*n(2)-k127*n(18)*n(43)-k156*n(18)*n(15)-k157*n(18)*n(16)-k158*n(18)*n(17);
k81*n(5)*n(15)+k86*n(8)*n(15)+k95*n(15)*n(21)+k96*n(15)*n(23)-k36*n(7)*n(19)-k49*n(9)*n(19)-k77*n(1)*n(19)-k97*n(19)*n(32)-k98*n(19)*n(24)-k128*n(19)*n(43);
k21*n(4)*n(30)+k37*n(7)*n(24)+k39*n(7)*n(26)+k57*n(24)*n(24)+k76*n(1)*n(21)+k82*n(4)*n(21)+k91*n(7)*n(21)+k95*n(15)*n(21)+k99*n(21)*n(26)+k100*n(21)*n(22)-k11*n(1)*n(20)-k18*n(5)*n(20)-k23*n(4)*n(20)-k53*n(15)*n(20)-k129*n(20)*n(43)-k159*n(20)*n(42)-k160*n(20)*n(42);
k40*n(7)*n(27)+k71*n(8)*n(7)+k160*n(20)*n(42)-k30*n(4)*n(21)-k60*n(21)*n(42)-k76*n(1)*n(21)-k82*n(4)*n(21)-k91*n(7)*n(21)-k95*n(15)*n(21)-k99*n(21)*n(26)-k100*n(21)*n(22);
k4*n(1)*n(37)+k5*n(2)*n(15)+k8*n(1)*n(15)+k24*n(4)*n(36)+k26*n(4)*n(26)+k27*n(4)*n(13)+k28*n(4)*n(35)+k29*n(4)*n(9)+k31*n(4)*n(14)+k32*n(4)*n(12)+2*k47*n(9)*n(15)+k49*n(9)*n(19)+k50*n(11)*n(15)+k54*n(15)*n(27)+k58*n(24)*n(37)+k65*n(1)*n(4)+k75*n(1)*n(23)+k83*n(4)*n(23)+k92*n(9)*n(23)+k96*n(15)*n(23)+k102*n(24)*n(23)+k139*n(1)*n(6)+k140*n(3)*n(4)-k13*n(1)*n(22)-k55*n(15)*n(22)-k79*n(5)*n(22)-k88*n(8)*n(22)-k100*n(21)*n(22)-k101*n(22)*n(27)-k130*n(22)*n(43)-k146*n(6)*n(22);
k7*n(2)*n(36)+k15*n(5)*n(9)+k33*n(4)*n(11)+k49*n(9)*n(19)+k50*n(11)*n(15)+k63*n(2)*n(4)+k67*n(1)*n(5)+k79*n(5)*n(22)+k88*n(8)*n(22)+k100*n(21)*n(22)+k101*n(22)*n(27)-k75*n(1)*n(23)-k83*n(4)*n(23)-k92*n(9)*n(23)-k96*n(15)*n(23)-k102*n(24)*n(23);
k20*n(4)*n(32)+k22*2*n(4)*n(30)+k23*n(4)*n(20)+k24*n(4)*n(36)+k25*n(4)*n(26)+k34*n(8)*n(15)+k35*n(7)*n(15)+k51*n(15)*n(37)+k106*n(3)*n(25)+k114*n(14)*n(25)+k115*n(12)*n(25)+k116*n(18)*n(25)+k147*n(6)*n(7)-k10*n(1)*n(24)-k14*n(3)*n(24)-k19*n(4)*n(24)-k37*n(7)*n(24)-k52*n(15)*n(24)-k57*2*n(24)*n(24)-k58*n(24)*n(37)-k72*n(2)*n(24)-k90*n(8)*n(24)-k94*n(11)*n(24)-k98*n(19)*n(24)-k102*n(24)*n(23)-k103*n(24)*n(27)-k131*n(24)*n(43)-k145*n(6)*n(24);
k6*n(2)*n(30)+k16*n(5)*n(26)+k17*n(5)*n(32)+k18*n(5)*n(20)+k30*n(4)*n(21)+k36*n(7)*n(19)+k54*n(15)*n(27)+k72*n(2)*n(24)+k90*n(8)*n(24)+k94*n(11)*n(24)+k98*n(19)*n(24)+k102*n(24)*n(23)+k103*n(24)*n(27)-k106*n(3)*n(25)-k114*n(14)*n(25)-k115*n(12)*n(25)-k116*n(18)*n(25);
k4*n(1)*n(37)+k6*n(2)*n(30)+k7*n(2)*n(36)+k10*n(1)*n(24)+k11*n(1)*n(20)+k12*n(1)*n(35)+k28*n(4)*n(35)+k41*n(7)*n(13)+k42*n(7)*n(14)+k43*n(7)*n(9)+k45*n(7)*n(11)+k46*2*n(7)*n(35)+k69*n(1)*n(7)+k73*n(1)*n(27)+k93*n(9)*n(27)+k101*n(22)*n(27)+k103*n(24)*n(27)+k112*n(8)*n(28)+k142*n(3)*n(7)+k164*n(7)*n(1)*n(1)-k9*n(1)*n(26)-k16*n(5)*n(26)-k25*n(4)*n(26)-k26*n(4)*n(26)-k39*n(7)*n(26)-k56*n(15)*n(26)-k85*n(6)*n(26)-k89*n(8)*n(26)-k99*n(21)*n(26);
k62*n(2)*n(7)+k89*n(8)*n(26)+k99*n(21)*n(26)-k40*n(7)*n(27)-k54*n(15)*n(27)-k73*n(1)*n(27)-k93*n(9)*n(27)-k101*n(22)*n(27)-k103*n(24)*n(27);
k14*n(3)*n(24)+k44*n(7)*n(12)+k85*n(6)*n(26)-k112*n(8)*n(28);
k163*n(1)*n(15)*n(4);
k38*n(7)*n(32)+k53*n(15)*n(20)+k58*n(24)*n(37)-k6*n(2)*n(30)-k21*n(4)*n(30)-k22*n(4)*n(30)-k80*n(5)*n(30);
k80*n(5)*n(30);
k52*n(15)*n(24)+k145*n(6)*n(24)-k17*n(5)*n(32)-k20*n(4)*n(32)-k38*n(7)*n(32)-k97*n(19)*n(32)-k165*n(1)*n(32)*n(4);
k97*n(19)*n(32);
k51*n(15)*n(37)+k55*n(15)*n(22)+k141*n(3)*n(15)+k146*n(6)*n(22);
-k12*n(1)*n(35)-k28*n(4)*n(35)-k46*n(7)*n(35);
-k7*n(2)*n(36)-k24*n(4)*n(36);
-k4*n(1)*n(37)-k51*n(15)*n(37)-k58*n(24)*n(37)+k56*n(15)*n(26);
k165*n(1)*n(32)*n(4);
k144*n(4)*n(12);
k64*n(1)*n(13)+k138*n(1)*n(14)+k148*n(9)*n(12);
k149*n(12)*n(13);
k118*n(1)*n(43)+k119*n(3)*n(43)+k120*n(6)*n(43)+k121*n(12)*n(43)+k123*n(12)*n(43)+k125*n(14)*n(43)+k127*n(18)*n(43)+k136*n(1)*n(3)+k137*n(1)*n(12)+k138*n(1)*n(14)+k139*n(1)*n(6)+k140*n(3)*n(4)+k141*n(3)*n(15)+k142*n(3)*n(7)+k143*n(4)*n(6)+k144*n(4)*n(12)+k145*n(6)*n(24)+k146*n(6)*n(22)+k147*n(6)*n(7)+k148*n(9)*n(12)+k149*n(12)*n(13)+k150*n(9)*n(42)+k151*n(15)*n(42)+k152*n(15)*n(42)+k153*n(10)*n(42)+k156*n(18)*n(15)+k157*n(18)*n(16)+k158*n(18)*n(17)+k159*n(20)*n(42)+2*k160*n(20)*n(42)-k1*n(2)*n(42)-k2*n(5)*n(42)-k3*n(8)*n(42)-k59*n(11)*n(42)-k60*n(21)*n(42)-k132*n(1)*n(42)-k133*n(4)*n(42)-k134*n(9)*n(42)-k135*n(13)*n(42)-k150*n(9)*n(42)-k151*n(15)*n(42)-k152*n(15)*n(42)-k153*n(10)*n(42)-k159*n(20)*n(42)-k160*n(20)*n(42)-k161*n(42)*n(4)*n(15)-k162*n(42)*n(4)*n(15);
-k118*n(1)*n(43)-k119*n(3)*n(43)-k120*n(6)*n(43)-k121*n(9)*n(43)-k122*n(11)*n(43)-k123*n(12)*n(43)-k124*n(13)*n(43)-k125*n(14)*n(43)-k126*n(15)*n(43)-k127*n(18)*n(43)-k128*n(19)*n(43)-k129*n(20)*n(43)-k130*n(22)*n(43)-k131*n(24)*n(43)+k1*n(2)*n(42)+k2*n(5)*n(42)+k3*n(8)*n(42)+k61*n(2)*n(1)+k62*n(2)*n(7)+k63*n(2)*n(4)+k64*n(1)*n(13)+k65*n(1)*n(4)+k66*n(1)*n(9)+k67*n(1)*n(5)+k68*n(1)*n(1)+k69*n(1)*n(7)+k70*n(4)*n(4)+k71*n(8)*n(7)+k132*n(1)*n(42)+k133*n(4)*n(42)+k134*n(9)*n(42)+k135*n(13)*n(42)]);
[t,n]= ode15s(F,[0:5e-12:1e-7],IC);
plot(t,n)
[IDA ERROR] IDASolve
At t = 0 and h = 4.76837e-021, the corrector convergence failed repeatedly
or with |h| = hmin.
error: IDASolve failed
error: called from
ode15s at line 315 column 22
conc at line 244 column 6
Akzeptierte Antwort
Sulaymon Eshkabilov
am 23 Mai 2021
Hi,
Don't specify the solver solution step here that enhances the solver's solution algorithm to adjust the step size. It is very important.
Here is the solution of your large ODE exercise:
...
OPTs = odeset('reltol', 1e-12, 'abstol', 1e-16, 'normcontrol', 'on', 'refine', 5); % ODE solver settings
[Time, SOL]=ode15s(F,[0, 1e-7],IC, OPTs); % NB: don't specify the step size that enhances the solver tools
loglog(Time,SOL), shg % log scale used to better visualize the computed solutions
Good luck.
7 Kommentare
Sulaymon Eshkabilov
am 28 Mai 2021
Another approach here is chnaging the solver type, try ode45, ode23tb, ode113 and see which one gives the solution in the shortest time.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!